Intermedio
P6. OMM 1987. Divisibilidad clásico de la OMM
Demuestre que para cualquier entero positivo $n$, el número $(n^3-n)(5^{8n+4}+3^{4n+2})$ es múltiplo de 3804.
P5. OMM 1987. Triángulo rectángulo y tres área iguales imposibles
Considere un triángulo rectángulo ABC donde la hipotenusa es BC. M un punto en BC; P y Q las proyecciones de M en AB y BC, respectivamente. Pruebe que, para ninguno de tales puntos M, son iguales las áreas de BPM, MQC y AQMP (las tres al mismo tiempo).
P4. OMM 1987. Producto de enteros menores que 100 y con tres divisores
Calcule el producto de todos los enteros positivos menores que 100, y que tengan exactamente tres divisores positivos. Compruebe que dicho número es un cuadrado perfecto.
P3. OMM 1987. Lugar geométrico de la proyección de un punto
Considere dos rectas $\ell$ y $\ell'$ y un punto fijo P que diste lo mismo de $\ell$, que de $\ell'$. ¿Qué lugar geométrico describen los puntos M que son proyección de P sobre AB, donde A está en $\ell$, B está en $\ell'$, y el ángulo APB es recto.
P2. OMM 1987. Divisores de 20 factorial
¿Cuántos enteros positivos dividen a 20! ? (20! = 1×2×3×· · ·×19×20).
Raíces cúbicas de números racionales
Sean $p,q,r$ números racionales no nulos tales que
$$\sqrt[3]{pq^2}+\sqrt[3]{qr^2}+\sqrt[3]{rp^2}$$
es un número racional no nulo. Demostrar que
$$\frac{1}{\sqrt[3]{pq^2}}+\frac{1}{\sqrt[3]{qr^2}}+\frac{1}{\sqrt[3]{rp^2}}$$ es también un número racional.
Embaldosado de un patio
Se desea embaldosar un patio cuadrado de lado $N$ entero positivo. Se dispone de dos tipos de baldosas: cuadradas de $5\times5$, y rectangulares de $1\times3$. Determine los valores de $N$ para los cuales es posible hacerlo. Nota: el patio debe quedar completamente cubierto sin que las baldosas se sobrepongan.
Mover una ficha en un tablero
Un jugador coloca una ficha en una casilla de un tablero $m\timesn$ dividido en cuadrados de tamaño $1\times1$. El jugador mueve la ficha de acuerdo a las siguientes reglas:
- En cada movida, el jugador mueve la ficha a un cuadrado que comparte un lado con el cuadrado en que se encuentra.
- El jugador no puede mover la ficha a un cuadrado que ha ocupado previamente.
- Dos movimientos consecutivos no pueden tener la misma dirección.
El juego termina cuando el jugador no puede mover la ficha. Determine todos los valores de $m$ y $ n $ tales que, al colocar la ficha en algún cuadrado, todos los cuadrados pueden ser ocupados durante el juego.
Tangente al circuncírculo
En el triángulo $ABC$, $L,M,N$ son los puntos medios de los lados $BC,CA,AB$, respectivamente. La tangente por $A$ al circuncírculo de $ABC$, corta en $P$ y $Q$ a las rectas $LM$ y $LN$, respectivamente. Demostrar que $CP$ es paralela a $BQ$.
Suma de dígitos
Si $S(n)$ denota la suma de los dígitos de un número natural n, encontrar todas las soluciones de $n(S(n)-1)=2010$ y demostrar que son las únicas.
