Intermedio

Problemas de nivel estatal y similares.
Problema

P3. OMM 1989. Número de 1989 cifras

Enviado por jmd el 6 de Julio de 2010 - 11:16.

Pruebe que no existe un número positivo de 1989 cifras que tenga al menos tres de ellas iguales a 5 y tal que la suma de todas las cifras sea igual al producto de las mismas.

Problema

P2. OMM 1989. Múltiplos encadenados

Enviado por jmd el 6 de Julio de 2010 - 11:13.

Encuentre dos números enteros $a$ y $b$ tales que:

  • $b^2$ es múltiplo de $a$;
  • $a^3$ es múltiplo de $b^2$;
  • $b^4$ es múltiplo de $a^3$;
  • $a^5$ es múltiplo de $b^4$;
  • pero $b^6$ no es múltiplo de $a^5$.
Problema

P1. OMM 1989. Áreas y medianas

Enviado por jmd el 6 de Julio de 2010 - 11:09.

Considere un triángulo $ABC$ en el que la longitud del lado $AB$ es 5, las medianas por $A$ y por $B$ son perpendiculares entre sí y el área es 18. Hallar las longitudes de los lados $BC$ y $AC$.

Problema

P8. OMM 1988. Esfera en octaedro

Enviado por jmd el 5 de Julio de 2010 - 19:20.

Calcule el volumen del octaedro que circunscribe a una esfera de radio 1.
 

Problema

P7. OMM 1988. Subconjuntos ajenos de {1,2,...,m}

Enviado por jmd el 5 de Julio de 2010 - 19:18.

Si $A$ y $B$ son subconjuntos ajenos del conjunto $\{1,2,\ldots,m\}$ y la suma de los elementos de $A$ es igual a la suma de los elementos de $B$, pruebe que el número de elementos de $A$ y también de $B$ es menor que $m/\sqrt{2}$
 

Problema

P5. OMM 1988. Manipulación algebraica con el MCD

Enviado por jmd el 5 de Julio de 2010 - 19:12.

Si $a$ y $b$ son dos enteros positivos primos relativos y $ n $ es un entero, pruebe que el máximo común divisor de $a^2+b^2-nab$ y $a+b$ divide a $n+2$

Problema

P4. OMM 1988. Ocho enteros entre uno y ocho

Enviado por jmd el 5 de Julio de 2010 - 19:07.

¿Cuántas maneras hay de escoger ocho enteros $a_1,a_2,a_3,\ldots,a_8$ no necesariamente distintos, tales que $1\leq{a_1}\leq\ldots\leq{a_8}\leq8$?
 

Problema

P2. OMM 1988. Expresiones equiresiduales (módulo 19)

Enviado por jmd el 5 de Julio de 2010 - 18:56.

Si $a$ y $b$ son enteros positivos, pruebe que 19 divide a $11a+2b$ si y sólo si 19 divide a $18a+5b$
 

Problema

P8. OMM 1987. El último de la primera nacional (de geometría tridimensional)

Enviado por jesus el 5 de Julio de 2010 - 11:41.
  1. Tres rectas en el espacio l, m, n concurren en el punto S y un plano perpendicular a m corta a l, m, n en A, B y C respectivamente. Suponga que los ángulos ASB y BSC son de 45° y que el ángulo ABC es recto. Calcule el ángulo ASC.
  2. Si un plano perpendicular a l corta a l, m, n en P, Q y R respectivamente y si SP = 1, calcule los lados del triángulo PQR.
Problema

P7. OMM 1987. Problema clásico de cocientes de polinomios de la OMM

Enviado por jesus el 5 de Julio de 2010 - 10:29.

Demuestre que si $n$ es un entero positivo, entonces $$\frac{n^2 + n -1}{n^2 + 2n}$$ es una fracción irreducible (simplificada).

Distribuir contenido