Intermedio
P1 OMM 1998. Números suertudos
Un número es suertudo si al sumar los cuadrados de sus cifras, y repetir esta operación suficientes veces, obtenemos el número 1. Por ejemplo, 1900 es suertudo, ya que $1900 \rightarrow 82 \rightarrow 68 \rightarrow 100 \rightarrow 1$. Encuentre una infinidad de parejas de enteros consecutivos, donde ambos números sean suertudos.
P1 OMM 1997. Primo función de un primo
Encuentre todos los números primos positivos $p$ tales que $8p^4 - 3003$ también es un primo positivo.
P4 OMM 1996. Ocho distintos múltiplos de n
¿Para qué enteros $n \geq 2$ se pueden acomodar los números del 1 al 16 en los cuadros de una cuadrícula de $4×4$ (un número en cada cuadro, sin repetir números) de tal manera que las 8 sumas de los números que quedan en cada fila y en cada columna sean múltiplos de $n$, y que estos 8 múltiplos sean todos distintos entre sí?
P1 OMM 1996. Cuadrilátero con diagonal trisecada
Sea $ABCD$ un cuadrilátero y sean $P$ y $Q$ los puntos de trisección de la diagonal $BD$ (es decir, $P$ y $Q$ son puntos del segmento $BD$ para los cuales las longitudes $BP, PQ$ y $QD$ son todas iguales). Sean $E$ la intersección de la recta que pasa por $A$ y $P$ con el segmento $BC$, y $F$ la intersección de la recta que pasa por $A$ y $Q$ con el segmento $DC$. Demuestra lo siguiente:
1. Si $ABCD$ es un paralelogramo, entonces $E$ y $F$ son los respectivos puntos medios de los segmentos $BC$ y $CD$.
2. Si $E$ y $F$ son los puntos medios de $BC$ y $CD$, respectivamente, entonces $ABCD$ es un paralelogramo.
P1 OMM 1995. Déjame estrechar tu mano
En una Olimpiada de Matemáticas los concursantes están ocupando todos los asientos de un salón rectangular donde los asientos están alineados en filas y columnas de tal manera que hay más de dos filas y en cada fila hay más de dos asientos. Al inicio del examen un profesor les sugiere que se deseen suerte dándose la mano; cada uno de los concursantes estrecha la mano de los concursantes que están junto a él (adelante, atrás, a los lados y en diagonal) y sólo a éstos. Alguien observa que se dieron 1020 apretones de manos ¿Cuántos concursantes hay?
P6 OMM 1994. Un problema muy negativo
Sea $C$ una cuadrícula de $10x10$. Considere piezas de las siguientes formas:
donde en cada pieza, los cuadrados son de $1 x 1$. Demuestre que:
- 1. $C$ no se puede cubrir completamente con 25 piezas de la forma (a)
- 2. $C$ no se puede cubrir completamente con 25 piezas de la forma (b)
- 3. $C$ no se puede cubrir completamente con 25 piezas de la forma (c)
P4 OMM 1994. Leer primero las páginas primas con 400
Un matemático caprichoso escribe un libro que tiene páginas de la 2 a la 400 y que debe ser leído de la siguiente manera: Primero deberán leerse todas las páginas cuyo número no sea primo relativo con 400 (por suerte, éstas se leen en orden normal, de menor a mayor). Una vez leídas éstas, se toma el último número de las que no se han leído (en este caso 399) y entonces se leen todas las páginas cuyo número no sea primo relativo con él y que no se hayan leído antes.
P3 OMM 1994. Bisectriz en un paralelogramo
Considere un paralelogramo $ABCD$ (con $AB$ paralela a $CD$ y $BC$ paralela a $DA$). Sobre la prolongación del lado $AB$ encuentre un punto $E$, de manera que $BE = BC$ (y con $B$ entre $A$ y $E$). Por $E$, trace una perpendicular a la línea $AB$, ésta se encontrará en un punto $F$ con la línea que pasa por $C$ y es perpendicular a la diagonal $BD$. Muestre que $AF$ divide en dos ángulos iguales al ángulo $DAB$.
P2 OMM 1994. Desorden en los números del reloj
Los doce números de un reloj se desprendieron y al colocarlos nuevamente,
se cometieron algunos errores. Demuestre que en la nueva colocación hay
un número que al sumarle los dos números que quedaron a sus lados se
obtiene un resultado mayor o igual a 21.
P1. OMM 1993. Triángulos en los catetos
Sea $ABC$ un triángulo rectángulo en $A$. Se construyen exteriormente
a este triángulo los triángulos rectángulos isósceles $AEC$ y $ADB$ con
hipotenusas $AC$ y $AB$, respectivamente. Sea $O$ el punto medio de $BC$
y sean $E'$ y $D'$ los puntos de intersección de $OE$ y $OD$ con $DB$ y $EC$
respectivamente. Calcule el área del cuadrilátero $DED'E'$ en función de
los lados del triángulo $ABC$.
