Intermedio

Problemas de nivel estatal y similares.
Problema

P2 OMM 2001. Un problema pelotudo

Enviado por jmd el 13 de Julio de 2010 - 21:53.

Se tienen algunas pelotas de colores (son por lo menos tres colores), y por lo menos tres cajas. Las pelotas se ponen en las cajas de manera que no quede vacía ninguna caja y que no haya tres pelotas de colores distintos que estén en tres cajas distintas. Prueba que hay una caja con todas las pelotas que están fuera de ella son del mismo color.

Problema

P1 OMM 2001. Múltiplos de 3 y 7 con dígitos 3 o 7

Enviado por jmd el 13 de Julio de 2010 - 21:50.

Encuentra todos los números de 7 dígitos que son múltiplos de 3 y de 7,
y cada uno de cuyos dígitos es 3 o 7.

Problema

P2 OMM 2000. Triángulo de números --con regla simple de formación

Enviado por jmd el 13 de Julio de 2010 - 19:59.

Se construye un triángulo como el de la figura, pero empezando con los números del 1 al 2000.

Problema

P1 OMM 2000. Puntos de tangencia concíclicos

Enviado por jmd el 13 de Julio de 2010 - 19:56.

Sean $A, B, C, D$ circunferencias tales que $A$ es tangente exteriormente a $B$ en $P$, $B$ es tangente exteriormente a $C$ en $Q$, $C$ es tangente exteriormente a $D$ en $R$, y $D$ es tangente exteriormente a $A$ en $S$. Supón que $A$ y $C$ no se intersectan, ni tampoco $B$ y $D$.

  • Prueba que los puntos $P, Q, R$ y $S$ están todos sobre una circunferencia.

Supón además que $A$ y $C$ tienen radio 2, $B$ y $D$ tienen radio 3, y la distancia entre los centros de $A$ y $C$ es 6.

  • Determina el área del cuadrilátero $PQRS$.
Problema

P5 OMM 1999. Bisectrices exteriores de trapecio

Enviado por jmd el 13 de Julio de 2010 - 19:20.

$ABCD$ es un trapecio con $AB$ paralelo a $CD$. Las bisectrices exteriores de los ángulos $B$ y $C$ se intersectan en $P$. Las bisectrices exteriores de los ángulos $A$ y $D$ se intersectan en $Q$. Demuestre que la longitud de $PQ$ es igual a la mitad del perímetro del trapecio $ABCD$.

Problema

P2 OMM 1999. Primos en sucesión aritmética

Enviado por jmd el 13 de Julio de 2010 - 19:04.

Demuestre que no existen 1999 primos en progresión aritmética, todos ellos menores que 12345. (Nota: Una colección de números está en progresión aritmética si es de la forma $a, a+r, a+2r,\ldots, a+br.$)

Problema

P1 OMM 1999. Estrategia ganadora con fichas rojinegras

Enviado por jmd el 13 de Julio de 2010 - 19:02.

Sobre una mesa se tienen 1999 fichas que son rojas de un lado y negras del otro (no se especifica cuántas con el lado rojo hacia arriba ni cuántas con el lado negro hacia arriba). Dos personas juegan alternadamente. Cada persona, en su turno, hace una de las siguientes cosas:

  • Retirar cualquier número de fichas, con la condición de que todas las fichas retiradas tengan el mismo color hacia arriba.
  • Voltear cualquier número de fichas, con la condición de que todas las
    fichas tengan el mismo color hacia arriba.

Gana el que toma la última ficha. ¿Cuál jugador puede asegurar que ganará, el primero en jugar o el segundo?

Problema

¿Pies alineados? Bueno... ¿de dónde vienen?

Enviado por jmd el 13 de Julio de 2010 - 17:24.


Sean $ABC$ un triángulo, $\gamma$ su circunferencia circunscrita (circuncírculo), y $P$ un punto sobre $\gamma$. Demostrar que los pies de las perpendiculares bajadas desde $P$ a los lados del triángulo (o su prolongación) son colineales.

Problema

P5 OMM 1998. Paralela si y sólo si... ¿Tales?

Enviado por jmd el 11 de Julio de 2010 - 11:28.

Sean $B$ y $C$ dos puntos de una circunferencia, y $AB$ y $AC$ las tangentes
desde un punto $A$. Sea $Q$ un punto del segmento $AC$ y $P$ la intersección de $BQ$ con la circunferencia. La paralela a $AB$ por $Q$ corta a $BC$ en $J$. Demuestre que $PJ$ es paralelo a $AC$ si y sólo si $BC^2 = AC \cdot QC$.

Problema

P4 OMM 1998. Sumas de dígitos inversos (\times un dígito)

Enviado por jmd el 11 de Julio de 2010 - 11:23.

Encuentre todos los enteros que se escriben como $$\frac{1}{a_1}+\frac{2}{a_2}+\ldots+\frac{9}{a_9}$$ donde $a_1, a_2, \ldots , a_9$ son dígitos distintos de cero que pueden repetir.

Distribuir contenido