Combinatoria
Problema 3 de la OMM 2008
Considera un tablero de ajedrez. Los números del 1 al 64 se escriben en las casillas del tablero como en la figura:
Las retas de ajedrez
Ana, Beto y Carlos decidieron jugar unas retas de ajedrez: al terminar una partida, el que estaba esperando entraba a jugar contra el ganador. Empezaron las retas con una partida entre Ana y Beto. Al final de varias partidas, Ana acumuló 17 victorias; Beto, 14 y Carlos no contó las suyas.
¿En cuántas partidas se enfrentaron Ana y Beto?
Elige los signos en la suma
¿Existirá alguna manera de elegir los símbolos $ + $ y $ - $ para que se satisfaga la igualdad $ \pm 1 \pm 2 \pm \cdots \pm 100 = 13^2 $ ?
Cómo rellenar un rectángulo con fichas
Para cada par de números naturales $a,b>1$ definamos $P_{a \times b}$ como el polígono que se forma a partir de un rectángulo de $a \times b$ removiendo dos cuadrados de $1 \times 1$ en dos esquinas opuestas . Demuestra que $P_{a \times b}$ se puede cubrir con rectángulitos de $1 \times 2$ sin que se traslapen si y sólo si $ a $ y $ b $ tienen distinta paridad.
¿Cuál es la invariante?
En las siguientes cuadriculas, se dice que dos cuadrados son adyacentes, si comparten un lado. Considere la siguiente operación T: se eligen cualesquiera dos números en cuadrados adyacentes y a ambos se les suma el mismo entero. ¿Se puede transformar el tablero de la izquierda en el de la derecha mediante iteraciones de T?.
particionar un conjunto
Sea S={1,2,…,2n}. ¿De cuántas formas se puede particionar S en subconjuntos de dos elementos? Ejemplo: una posibilidad es {1,2},{3,4},…,{2n-1,2n}.
Separación de amigos
Demostrar que cualquier conjunto de personas puede dividirse en dos grupos, de tal manera que cada una de las personas tiene al menos la mitad de sus amigos en el otro grupo.
Estudia después
En el mítin de la prepa $X$, convocado por la planilla “Estudia Después” están programados 5 oradores, digamos $A,B,C,D,E$. Los líderes impusieron la condición de que $A$ debe hablar antes que $E$. ¿De cuántas formas se puede ordenar los oradores?
Subconjuntos guapos
Sea $A=\{1,2,3,4,5,6,7,8,9,10,11 \}$ el conjunto de los primeros 11 enteros positivos. Llamemos guapo a todo subconjunto de $ A $ que cumple que si $2k$ es del subconjunto entonces también son del subconjunto $2k-1$ y $2k+1$. Encontrar el número de subconjuntos guapos de $ A $ que contienen a lo más un número par.
la clave secreta
Sea una clave que cumple las siguientes condiciones:
a) cinco cifras (dígitos)
b) el número es par
c) exactamente uno de los dígitos es impar
d) exactamente una de las cifras se repite, la que se repite es par y aparece en dos posiciones no consecutivas de la clave secreta
¿Cuántas claves (números de 5 cifras) son posibles bajo estas condiciones?
