Combinatoria
Subconjuntos sin consecutivos
¿De cuántas formas se puede elegir un subconjunto de tamaño 3 y sin elementos consecutivos del conjunto $\{1,2,\ldots,20\}$?
Torneo de tenis
En un torneo de tenis de eliminación simple todos los partidos son eliminatorios y no hay empates (si el número de participantes no es potencia de 2 se organiza una eliminatoria bye). ¿Cuántos partidos se juegan?
2k malitos
La PGR detuvo a $2k$ presuntos malitos para interrogarlos: $k$ policías y $k$ funcionarios.
Palabras alienígenas
a) ¿Cuántas palabras de 6 letras se pueden formar con el alfabeto $\{A,E,L,R,T\}$?
b) ¿Cuántas se pueden formar si inician y terminan en consonante $(L,R,T)$?
c) ¿Y si además contienen las dos vocales $A,E$ pero en posiciones no adyacentes?
Palabras en un alfabeto
¿Cuántos números de 5 dígitos tienen todos sus dígitos de la misma paridad y ninguno de sus dígitos es el cero? Nota: se dice que dos números son de la misma paridad si ambos son pares o ambos son impares.
Regiones 2009, problema 1
¿De cuántas formas se pueden colocar los números $0,1,2,3,4,5,6$, uno en cada casilla del siguiente panal, sin que haya 2 múltiplos de 3 en casillas adyacentes (i.e., con un lado en común)?
Problema 1, geometrense 2008
En un circunferencia hay $3n$ puntos que la dividen en $3n$ arcos. De estos arcos $ n$ miden 1, $n $ miden 2 y el resto mide 3. Demuestra que existen dos de estos puntos diametralmente opuestos.
Problema 6, XII Olimpiada Iberoamericana
Sea $P=\{P_1, P_2, \dots, P_{1997}\}$ un conjunto de 1997 puntos en el interior de un círculo de radio 1, siendo $P_1$ el centro del círculo. Para cada $k=1, \dots, 1997$ sea $x_k$ la distancia de $P_k$ al punto de $ P$ más próximo a $P_k$ y distinto de $P_k$. Demostrar que:
$$x_1^2 + x_2^2 + \cdots +x_{1997}^2 \leq 9$$
P3. OMM 1993
Dentro de un pentágono de área 1993 se encuentran 995 puntos. Considere estos puntos junto con los vértices del pentágono.
Muestre que, de todos los triángulos que se pueden formar con los 1000 puntos anteriores como vértices, hay al menos uno de área menor o igual que 1.
Ladrones de la tercera edad
"El Carrizos" y "el Mayel", dos ladrones de la tercera edad, han robado un collar circular con $2m$ cuentas de oro y $2n$ cuentas de plata, dispuestas en un orden desconocido.
