Combinatoria

Problema

Subconjuntos sin consecutivos

Enviado por jmd el 15 de Junio de 2009 - 07:37.

¿De cuántas formas se puede elegir un subconjunto de tamaño 3 y sin elementos consecutivos del conjunto $\{1,2,\ldots,20\}$?

Problema

Torneo de tenis

Enviado por jmd el 13 de Junio de 2009 - 07:54.

En un torneo de tenis de eliminación simple todos los partidos son eliminatorios y no hay empates (si el número de participantes no es potencia de 2 se organiza una eliminatoria bye). ¿Cuántos partidos se juegan?

Problema

2k malitos

Enviado por jmd el 2 de Junio de 2009 - 18:11.

La PGR detuvo a $2k$ presuntos malitos para interrogarlos: $k$ policías y $k$ funcionarios.

Problema

Palabras alienígenas

Enviado por jmd el 2 de Junio de 2009 - 12:15.

a) ¿Cuántas palabras de 6 letras se pueden formar con el alfabeto $\{A,E,L,R,T\}$?

b) ¿Cuántas se pueden formar si inician y terminan en consonante $(L,R,T)$?

c) ¿Y si además contienen las dos vocales $A,E$ pero en posiciones no adyacentes?

Problema

Palabras en un alfabeto

Enviado por jmd el 1 de Junio de 2009 - 08:52.

¿Cuántos números de 5 dígitos tienen todos sus dígitos de la misma paridad y ninguno de sus dígitos es el cero? Nota: se dice que dos números son de la misma paridad si ambos son pares o ambos son impares.
 

Problema

Regiones 2009, problema 1

Enviado por jmd el 31 de Mayo de 2009 - 19:30.

¿De cuántas formas se pueden colocar los números $0,1,2,3,4,5,6$, uno en cada casilla del siguiente panal, sin que haya 2 múltiplos de 3 en casillas adyacentes (i.e., con un lado en común)?
 

Problema

Problema 1, geometrense 2008

Enviado por jesus el 22 de Mayo de 2009 - 19:57.

En un circunferencia hay $3n$ puntos que la dividen en $3n$ arcos. De estos arcos $ n$ miden 1,  $n $ miden 2 y el resto mide 3. Demuestra que existen dos de estos puntos diametralmente opuestos.

Problema

Problema 6, XII Olimpiada Iberoamericana

Enviado por jesus el 19 de Mayo de 2009 - 23:42.

Sea $P=\{P_1, P_2, \dots, P_{1997}\}$ un conjunto de 1997 puntos en el interior de un círculo de radio 1, siendo $P_1$ el centro del círculo. Para cada $k=1, \dots, 1997$ sea $x_k$ la distancia de $P_k$ al punto de $ P$ más próximo a $P_k$ y distinto de $P_k$. Demostrar que:

$$x_1^2 + x_2^2 + \cdots +x_{1997}^2 \leq 9$$

Problema

P3. OMM 1993

Enviado por jesus el 19 de Mayo de 2009 - 17:49.

Dentro de un pentágono de área 1993 se encuentran 995 puntos. Considere estos puntos junto con los vértices del pentágono.

Muestre que, de todos los triángulos que se pueden formar con los 1000 puntos anteriores como vértices, hay al menos uno de área menor o igual que 1.

Problema

Ladrones de la tercera edad

Enviado por jmd el 27 de Febrero de 2009 - 07:23.

"El Carrizos" y "el Mayel", dos ladrones de la tercera edad, han robado un collar circular con $2m$ cuentas de oro y $2n$ cuentas de plata, dispuestas en un orden desconocido.

Distribuir contenido