Problemas - Geometría

Problema

El 3 de Regiones

Enviado por jmd el 4 de Junio de 2009 - 13:28.

Sea $ ABC $ un triángulo rectángulo en $A$. La circunferencia con diámetro $AB$ corta a $ BC $ en $D$, y la circunferencia que pasa por $A, D,$ y el punto medio $O$ de $AB,$ corta a $CA$ en $P$ y corta nuevamente a $ BC $ en $Q$. Demuestra que $PQOA$ es un rectángulo.

Problema

Problema 1, geometrense 2008

Enviado por jesus el 22 de Mayo de 2009 - 20:57.

En un circunferencia hay $3n$ puntos que la dividen en $3n$ arcos. De estos arcos $ n$ miden 1,  $n $ miden 2 y el resto mide 3. Demuestra que existen dos de estos puntos diametralmente opuestos.

Problema

Ángulos en el reloj

Enviado por jmd el 20 de Mayo de 2009 - 08:32.

¿Cuál es el ángulo que forman las manecillas del reloj a las 9:30?  (Argumento fiador requerido.)

Problema

Problema 6, XII Olimpiada Iberoamericana

Enviado por jesus el 20 de Mayo de 2009 - 00:42.

Sea $P=\{P_1, P_2, \dots, P_{1997}\}$ un conjunto de 1997 puntos en el interior de un círculo de radio 1, siendo $P_1$ el centro del círculo. Para cada $k=1, \dots, 1997$ sea $x_k$ la distancia de $P_k$ al punto de $ P$ más próximo a $P_k$ y distinto de $P_k$. Demostrar que:

$$x_1^2 + x_2^2 + \cdots +x_{1997}^2 \leq 9$$

Problema

P3. OMM 1993

Enviado por jesus el 19 de Mayo de 2009 - 18:49.

Dentro de un pentágono de área 1993 se encuentran 995 puntos. Considere estos puntos junto con los vértices del pentágono.

Muestre que, de todos los triángulos que se pueden formar con los 1000 puntos anteriores como vértices, hay al menos uno de área menor o igual que 1.

Problema

El polo de la recta que pasa por el vértice y el punto de tangencia.

Enviado por jesus el 18 de Mayo de 2009 - 18:37.

Sea $ ABC$ un triángulo y sean $ D$, $ E$ y $ F$ los puntos donde la circunferencia circunscrita es tangente al lado $ BC$, $CA$ y $ AB$. Llamemos $D'$ el punto donde la recta $EF$ corta a la recta $AB$. Demuestra que:

a) $D'$ es el conjugado armónico de $D$ con respecto al segmento $ AB$.

b) Que la recta $AD$ es la polar de $D'$ respecto al incírculo.

Problema

Demostrar cuadrado

Enviado por Luis Brandon el 18 de Mayo de 2009 - 14:03.

Sea ABCD un cuadrilatero tal que los angulos internos en los vertices A, B, y C son de cuarenta y cinco grados. Demostrar que los puntos medios de los lados del cuadrilatero determinan un cuadrado.

Propuesto por: Fernando

Problema

Media armónica de las bases de un trapecio.

Enviado por jesus el 16 de Mayo de 2009 - 18:54.

Considere $\mu$ un segmento paralelo a las bases $a$ y $b$ de un trapecio, de tal manera que $\mu$ pasa por el punto de intersección de las diagonales y sus extremos están sobre los lados del trapecio. Demostrar que $\mu$ es la media armónica de $a$ y $b$, es decir: \mu = \frac{2}{\frac{1}{a} + \frac{1}{b}}

Problema

Tres círculos congruentes

Enviado por jmd el 14 de Mayo de 2009 - 11:16.

Tres círculos $C_1, C_2, C_3$ del mismo radio se intersectan no tangencialmente en un punto $P$. Sean $A, B$ los centros de $C_1, C_2$, respectivamente;  y $C, D$ los puntos de intersección de $C_1, C_2$, respectivamente, con $C_3$. ($C, D$ son ambos diferentes de $P$.) Demostrar que $ABCD$ es un paralelogramo.

Problema

Cíclico en tres circunferencias tangentes

Enviado por jesus el 9 de Mayo de 2009 - 21:37.

Considere  $\mathcal{C}_1$, $\mathcal{C}_2$ y $\mathcal{C}_3$ tres circunferencia que por pares son tangentes externas. Llamemos $P$ y $Q$ los puntos de tangencia de $\mathcal{C}_1$ con $\mathcal{C}_2$ y $\mathcal{C}_3$ respectivamente.