Geometría

Problema

Un punto en el interior de un triángulo

Enviado por jmd el 1 de Abril de 2010 - 19:51.

Sean P un punto en el interior del triángulo ABC y un ángulo $\alpha$ dado. Los ángulos en la base AB del triángulo ABP miden $x$ y $90-2\alpha$, los ángulos en la base BC del triángulo BCP miden $90-2\alpha$ y $2\alpha-60$, y los de la base CA del triángulo CAP miden $60+\alpha$ y T. Encontrar el valor de $x$ en términos de $\alpha$. (¿Qué condiciones debe cumplir el valor $\alpha$.)

Problema

Isósceles y equilátero --elemental pero no trivial

Enviado por jmd el 1 de Abril de 2010 - 19:27.

Sean ABC un triángulo, con AB=AC y ángulo en A de 100 grados, y un punto B' en el mismo plano de tal manera que AB'C es equilátero. Encontrar el ángulo ABB'.

Problema

Ejercicio 3.3.9

Enviado por jesus el 2 de Marzo de 2010 - 18:12.

Sean $\pi_1, \pi_2, \pi_3, \pi_4, \pi_5, \pi_6$ tres planos en un espacio proyectivo tridimensional de tal manera que cada uno de los siguientes conjuntos de tres planos tienen una línea común de intersección:

\[\{\pi_1, \pi_2, \pi_3\}, \{\pi_1, \pi_4, \pi_5\}, \{\pi_3, \pi_5, \pi_6\}, \{\pi_2, \pi_4, \pi_6\}\]

Más aun, no cuatro de éstos planos tienen una línea común.

Prueba que los seis planos tienen un punto en común.

Problema

Ejercicio 3.3.12

Enviado por jesus el 2 de Marzo de 2010 - 17:55.

Demuestra lo siguiente sobre planos afines:

Problema

Ejercicio 3.3.6

Enviado por jesus el 2 de Marzo de 2010 - 17:32.

Supon que el teorema de Desargues es válido en un cierto plano proyectivo $\mathcal{P}$. Prueba que su converso también será válido sin utilizar el Principio de Dualidad.

Problema

Ejercicio 3.3.1

Enviado por jesus el 2 de Marzo de 2010 - 17:27.

Considera la tripleta $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ con $\mathcal{P}=\{1,2,3, 4\}$, $\mathcal{L} = \{a, b, c, d, e, f\}$ y $\mathcal{I} = \{(1,a), (2,a), (3,b), (4,b), (1,c), (3,c), (2,d), (4,d), (1,e),(4,e),(2,f),(3,f)\}$.

  1. Dibuja un diagrama de esta tripleta.
  2. Verifica que esta tripleta satisface únicamente dos de los axiomas de plano proyectivo.
Problema

Ejercicio 3.2

Enviado por jesus el 1 de Marzo de 2010 - 18:03.

Sea $\pi$ un plano proyectivo. Usa la definición 3.11(la definición de espacio proyectivo pero simplificada) para probar que:

P3'. Existe almenos tres líneas no concurrentes en $\pi$.

P4'. Exiten almenos tres líneas que pasan por cualquier punto en $\pi$.

Deduce que el principio de dualidad es válido en un plano proyectivo.

Problema

Ejercicio 3.1.7

Enviado por jesus el 1 de Marzo de 2010 - 17:57.

Demuestra que para cuales quiera $S_r$ y $S_n$ espacios proyectivos, el espacio $S_r \oplus S_n $ está formado por aquellos (y sólo aquellos) puntos que se encuentran sobre un línea que une un punto de $S_r$ y uno de $S_n$

Problema

Ejercicio 3.1.5

Enviado por jesus el 25 de Febrero de 2010 - 11:41.

Sean $\ell$, $m$ y $n$ tres líneas mutuamente oblicuas (i.e, no dos de ellas se intersectan) en un espacio proyectivo $S_3$ de dimensión 3. Demuestre que por cada punto de $\ell$ pasa una única línea $r$ que intersecta a $m$ y $n$.

Esas líneas son llamadas $(\ell, m, n)$-transversales. El conjunto de $\mathcal{R}$ de todas las $(\ell, m, n)$-transversales es llamado un regulus, y algunas veces es denotado por $\mathcal{R}(\ell, m, n)$. Demuestre que no hay dos $(\ell, m , n)$-transversales distintas que se intersecten.

Problema

Ejercicio 3.1.2

Enviado por jesus el 25 de Febrero de 2010 - 01:46.

Dos planos en un espacio proyectivo de dimensión 4, $S_4$, se dice que son oblicuos (skew en inglés) si se intersectan en un sólo punto. Sean $\pi$, $\alpha$ y $\beta$ tres planos mutuamente oblicuos en $S_4$. Demuestra que existe un único plano de $S_4$ que intesecta a cada uno de los planos $\pi$, $\alpha$ y $\beta$ en una recta.

Distribuir contenido