Problemas
También puedes compartirnos alguno de tus problemas favoritos:
Un punto en el interior de un triángulo
Sean P un punto en el interior del triángulo ABC y un ángulo $\alpha$ dado. Los ángulos en la base AB del triángulo ABP miden $x$ y $90-2\alpha$, los ángulos en la base BC del triángulo BCP miden $90-2\alpha$ y $2\alpha-60$, y los de la base CA del triángulo CAP miden $60+\alpha$ y T. Encontrar el valor de $x$ en términos de $\alpha$. (¿Qué condiciones debe cumplir el valor $\alpha$.)
Isósceles y equilátero --elemental pero no trivial
Sean ABC un triángulo, con AB=AC y ángulo en A de 100 grados, y un punto B' en el mismo plano de tal manera que AB'C es equilátero. Encontrar el ángulo ABB'.
Ejercicio 3.3.9
Sean $\pi_1, \pi_2, \pi_3, \pi_4, \pi_5, \pi_6$ tres planos en un espacio proyectivo tridimensional de tal manera que cada uno de los siguientes conjuntos de tres planos tienen una línea común de intersección:
\[\{\pi_1, \pi_2, \pi_3\}, \{\pi_1, \pi_4, \pi_5\}, \{\pi_3, \pi_5, \pi_6\}, \{\pi_2, \pi_4, \pi_6\}\]
Más aun, no cuatro de éstos planos tienen una línea común.
Prueba que los seis planos tienen un punto en común.
Ejercicio 3.3.12
Demuestra lo siguiente sobre planos afines:
Ejercicio 3.3.6
Supon que el teorema de Desargues es válido en un cierto plano proyectivo $\mathcal{P}$. Prueba que su converso también será válido sin utilizar el Principio de Dualidad.
Ejercicio 3.3.1
Considera la tripleta $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ con $\mathcal{P}=\{1,2,3, 4\}$, $\mathcal{L} = \{a, b, c, d, e, f\}$ y $\mathcal{I} = \{(1,a), (2,a), (3,b), (4,b), (1,c), (3,c), (2,d), (4,d), (1,e),(4,e),(2,f),(3,f)\}$.
- Dibuja un diagrama de esta tripleta.
- Verifica que esta tripleta satisface únicamente dos de los axiomas de plano proyectivo.
Ejercicio 3.2
Sea $\pi$ un plano proyectivo. Usa la definición 3.11(la definición de espacio proyectivo pero simplificada) para probar que:
P3'. Existe almenos tres líneas no concurrentes en $\pi$.
P4'. Exiten almenos tres líneas que pasan por cualquier punto en $\pi$.
Deduce que el principio de dualidad es válido en un plano proyectivo.
Ejercicio 3.1.7
Demuestra que para cuales quiera $S_r$ y $S_n$ espacios proyectivos, el espacio $S_r \oplus S_n $ está formado por aquellos (y sólo aquellos) puntos que se encuentran sobre un línea que une un punto de $S_r$ y uno de $S_n$
Ejercicio 3.1.5
Sean $\ell$, $m$ y $n$ tres líneas mutuamente oblicuas (i.e, no dos de ellas se intersectan) en un espacio proyectivo $S_3$ de dimensión 3. Demuestre que por cada punto de $\ell$ pasa una única línea $r$ que intersecta a $m$ y $n$.
Esas líneas son llamadas $(\ell, m, n)$-transversales. El conjunto de $\mathcal{R}$ de todas las $(\ell, m, n)$-transversales es llamado un regulus, y algunas veces es denotado por $\mathcal{R}(\ell, m, n)$. Demuestre que no hay dos $(\ell, m , n)$-transversales distintas que se intersecten.
Ejercicio 3.1.2
Dos planos en un espacio proyectivo de dimensión 4, $S_4$, se dice que son oblicuos (skew en inglés) si se intersectan en un sólo punto. Sean $\pi$, $\alpha$ y $\beta$ tres planos mutuamente oblicuos en $S_4$. Demuestra que existe un único plano de $S_4$ que intesecta a cada uno de los planos $\pi$, $\alpha$ y $\beta$ en una recta.
Ejercicio 2.1.4
- a) Dualiza el teorema de Papus.
- b) Dibuja la configuración dual.
Ejercicio 2.1.2
Sea $ABCD$ un cuadrángulo en el plano Euclideano extendido (PEE). Sea $X = AB \cap CD$, $Y= BD \cap CA$, $Z = AD\cap BC$. El triángulo $XYZ$ es llamado triángulo diagonal.
Dibuja la configuración dual (el cuadrilátero y su trilátero diagonal).
Cuerdas y concurrencia
Sean PQ, RS y TU cuerdas de una circunferencia tales que PQ=RS=TU, y éstas no se intersectan dentro de la circunferencia. UP corta a QR en A, QR corta a ST en B y ST corta a UP en C. Sean L, M y N los puntos medios de PQ, RS y TU respectivamente. Demostrar que AL, BM y CN son concurrentes.
XXIIIOMM Problema 5
Considera un triángulo ABC y un punto M sobre el lado BC. Sea P la intersección de las perpendiculares a AB por M y a BC por B, y sea Q la intersección de las perpendiculares a AC por M y a BC por C. Muestra que PQ es perpendicular a AM si y sólo si M es punto medio de BC.
XXIIIOMM Problema 1
Sean ABC un triángulo y AD la altura sobre el lado BC. Tomando a D como centro y a AD como radio, se traza una circunferencia que corta a la recta AB en P, y corta a la recta AC en Q. Muestra que el triángulo AQP es semejante al triángulo ABC.
Construir un cuadrado inscrito a otro
Sean ABCD un cuadrado y M un punto en el interior de éste. Construir con regla y compás un cuadrado PQRS con sus vértices sobre los lados de ABCD y que M esté sobre alguno de los lados de PQRS.
Incentro y circuncírculo
Dado un triángulo $ ABC $, sea $I$ su incentro y $ L $ el punto donde la linea $ AI $ intersecta al circuncirculo . Demuestra que $ AL/LI=(AB+AC)/BC.$
IX Olimpiada Norestense de Matemáticas (Problema 3)
El incírculo del triángulo $\triangle ABC$ es tangente al lado $AB$ en el punto $P$ y al lado $ BC $ en el punto $Q$. El círculo que pasa por los puntos $A,P,Q$ corta por segunda vez a la recta $ BC $ en $ M $ y el círculo que pasa por los puntos $C,P,Q$ corta por segunda vez a la recta $ AB $ en el punto $ N $.
XXIV Olimpiada Iberoamericana de Matemáticas (problema 4)
Sea $ ABC $ un triángulo con $AB\neq AC$. Sean $ I $ el incentro de $ ABC $ y $ P $ el otro punto de intersección de la bisectriz exterior del ángulo $A $ con el circuncírculo de $ ABC $. La recta $PI$ intersecta por segunda vez al circuncírculo de $ ABC $ en el punto $J $. Demostrar que los circuncírculos de los triángulos $JIB$ y $JIC$ son tangentes a $IC$ y a $IB$, respectivamente.
XXIV Olimpiada Iberoamericana de Matemáticas (problema 3)
Sean $C_1$ y $C_2$ dos circunferencias de centros $O_1$ y $O_2$, con el mismo radio, que se cortan en $A $ y en $ B $. Sea $P $ un punto sobre el arco $AB$ de $C_2$ que está dentro de $C_1$. La recta $AP$ corta a $C_1$ en $C $, la recta $CB$ corta a $C_2$ en $D $ y la bisectriz del $\angle CAD$ intersecta a $C_1$ en $E $ y a $C_2$ en $L $. Sea $F $ el punto simétrico a $D $ con respecto al punto medio de $PE$. Demostrar que existe un punto $X $ que satisface $\angle XFL = \angle XDC = 30^\circ$ y $CX = O_1O_2$.
