Problemas - Combinatoria
P3. Los caminos ascendentes completos
Sea $n$ un entero positivo. Considera un tablero de $2 \times n$ dividido en cuadrados de $1 \times 1$. Cada cuadrado del tablero se etiqueta con un número distinto elegido de entre el $1$ al $2n$ elegido exactamente una vez.
Cudarícula de lados $(2^n - 1)$ y $(2^n + 1)$ (P5)
Una cuadrícula con lados de longitudes $(2^n - 1)$ y $(2^n + 1)$ se quiere dividir en rectángulos ajenos con lados sobre líneas de la cuadrícula y con un número de cuadraditos de $1 \times 1$ dentro del rectángulo igual a una potencia de $2$.
Encuentra la menor cantidad de rectángulos en los que se puede dividir la cuadrícula.
Nota: El $1$ es considerado una potencia de $2$ pues $2^0 = 1$.
P6. Borrando pizarrón hasta que ambos sumen un múltiplo de 3
Ana y Beto juegan en un pizarrón donde se han colocado los números del 1 al 2024. En cada turno Ana escoge tres números $a,b,c$ escritos en el pizarrón y en su turno Beto los borra y reescribe alguno de los números:
$$a+b-c, a-b+c, b+c-a$$
El juego termina cuando quedan solamente dos números y Ana no puede hacer su jugada. si la suma de los números que quedan al final es múltiplo de 3, Beto gana. En caso contrario, Ana gana. ¿Quién puede asegurar su victoria?
P5. Conjuntos infinitos iguales y uno en sucesión aritmética
Sean $A$ y $B$ dos conjuntos finitos de números reales positivos tales que:
- Para cualquier par de elementos $u \geq v$ de $A$, se cumple que $u+v$ es elemento de $B$
- Para cualquier par de elementos $s > t$ de $B$, se cumple que $s-t$ es un elemento de $A$
Prueba que $A=B$ o existe un número real $r$ tal que $B=\{2r, 3r, 4r, \dots \}$
P4 Un mago y sus fichas B/N
Dada una colección de varias fichas que pueden ser negras o blancas y que tienen, cada una, un número escrito en ellas, un mago hace el siguiente movimiento: Toca 2 de las fichas con distinto número y color, y la de número menor se convierte en una ficha idéntica a la otra.
Sea $n$ un entero mayor o igual a 2. Para cada uno de los movimientos del 1 al $n$, el mago pone en la mesa una ficha negra o blanca con ese número. Luego hace su $movimiento$ para ir modificando la colección.
P2 Germán y su obsesión con los polígonos regulares.
Los números del 1 al 2000 se encuentran colocados sobre los vértices de un polígono regular de 2000 lados, uno en cada vértice, de manera que se cumple lo siguiente: Si cuatro enteros $A, B, C, D$ cumplen que $1\leq A < B < C < D \leq 2000$, entonces el segmento que une los vértices donde están los números $A$ y $B$ y el segmento que une los vértices donde están $C$ y $D$ no se intersectan en el interior del polígono. Demuestra que existe un entero positivo que es un cuadrado perfecto tal que el número diametralmente opuesto a él no es un número cuadrado perfecto.
6.- Punto ideal de semejanza
Encuentra todos los $n \geq 3$, tales que existe un polígon convexo de $n$ lados $A_1A_2 \dots A_n$, que tenga las siguientes características:
- todos los ángulos internos de $A_1A_2 \dots A_n$ son iguales
- no todos los lados de $A_1A_2 \dots A_n$ son iguales
- existe un triángulo $T$ y un punto $O$ en el interior de $A_1A_2 \dots A_n$ tal que los $n$ triángulos $OA_1A_2$, $OA_2A_3$, $\dots$, $OA_{n-1}A_n$ son todos semejantes a $T$
NOTAS:
5.- Borrando divisores de un pizarrón
Sea $n > 1$ un entero positivo y sean $d_1 < d_2 < ... < d_m$ sus $m$ enteros positivos de manera que $d_1 = 1$ y $d_m = n$. Lalo escribe los siguientes $2m$ números en un pizarrón:
$d_1 , d_2 , ... , d_m , d_1 + d_2 , d_2 + d_3 , ... , d_{m-1} + d_m , N$
donde $N$ es un entero positivo. Después Lalo borra los números repetidos (por ejemplo, si un número repetido aparece 2 veces, el borrará uno de los dos). Después de esto, Lalo nota que los números en el pizarrón son precisamente la lista completa de divisores positivos de $N$. Encuentra todos los posibles valores del entero positivo $n$.
2.- Ataque de torres en un tablero cúbico.
Sea $n$ un entero positivo. David tiene 6 tableros de ajedrez de $n \times n$ que ha dispuesto de manera que formen las 6 caras de un cubo de $n \times n \times n$. Se dice que dos casillas $a$ y $b$ de este nuevo tablero cúbico están alineadas si podemos conectarlas por medio de un camino de casillas $a = c_1, c_2, \dots, c_m = b$ de manera que cada pareja de casillas consecutivas en el camino comparten un lado, y los lados que la casilla $c_i$ comparte con sus vecinas son lados opuestos del cuadrado $c_i$, para $i = 2, 3, \dots, m-1$. Diremos que dos torres colocadas sobre el tablero se atacan; si las casillas que ocupan están alineadas. David coloca algunas torres sobre el tablero de forma que ninguna ataque a otra.

Secuencia de conjuntos no vacios (OMM 2021 P6)
Determina todos los conjuntos no vacíos $C_1, C_2, C_3, \dots$, tales que cada uno de ellos tiene un número finito de elementos y todos sus elementos son enteros positivos, con la siguiente propiedad: Para cualesquiera enteros positivos $m$ y $n$, la cantidad de enteros positivos en el conjunto $C_m$ más la cantidad de enteros positivos en $C_n$ es igual a la suma de los elementos en el conjunto $C_{m+n}$.
Nota: Al denotar con $|C_k|$ la cantidad de elementos de $C_k$ y con $S_k$ la suma de los elementos de $C_k$, la condición del problema es que para $m$ , $n$ enteros positivos se cumple
$$|C_n|+|C_m| = S_{m+n}$$- 1
- 2
- 3
- 4
- siguiente ›
- última »
