Geometría
El Tesoro Pirata
En el mapa está un roble, un pino y un mezquite. Las instrucciones son: camina desde el mezquite hacia el pino, gira a la izquierda en ángulo recto, camina la misma distancia que hay del mezquite al pino, y clava ahí una estaca X; después regresa al mezquite, camina hacia el roble, gira a la derecha en ángulo recto, camina la misma distancia que hay entre el roble y el mezquite, y clava ahí una estaca Y. El tesoro está enterrado en el punto medio del segmento XY. ¿Qué hacer si el mezquite ha desaparecido?
Teorema de Pitágoras
Un triángulo de lados $a, b, c$, con $c > a, b$ es triángulo rectángulo sí y sólo si $c^2 = a^2 + b^2$.
QUINTO EXAMEN SELECTIVO
Problema 1 Dado un triángulo acutángulo ABC se trazan las circunferencias c1 de diámetro AB y c2 de diámetro BC y se ubican las intersecciones M y N y P y Q de las alturas CC’ y BB’ (vistas como rectas) con c1 y c2, respectivamente. Demostrar que los puntos M, N, P y Q pertenecen a una misma circunferencia.
Tesoro Pirata Disfrazado
El problema del tesoro pirata puede ser planteado de la siguiente manera. Sean dados los triángulos MPX y MRY, ambos isósceles y rectángulos en P y R respectivamente. Demostrar que la mediatriz del segmento PR pasa por el punto medio de XY.
Triángulo rectángulo -enunciado
Considere un triángulo rectángulo con longitudes a, b y c, la hipotenusa es de longitud c, sea r la longitud del radio de la circunferencia inscrita en el triángulo. Demuestre que r es igual a la mitad de a+b-c.
Problema 1, OMM 2005
Sea $O$ el centro de la circunferencia circunscrita al triángulo $ABC$, y $P$ un punto cualquiera del segmento $BC$ ($P$ no es ni $B$ ni $C$). La circunferencia circunscrita al triángulo $BPO$ corta en $R$ al segmento $AB$ ($R$ no es $A$ ni es $B$), y la circunferencia circunscrita al triángulo $COP$ corta en $Q$ al segmento $CA$ ($Q$ no es $C$ ni es $A$).
i)Demostrar que el triángulo $PQR$ es semejante al $ABC$ y que $O$ es ortocentro de $PQR$.
ii)Demuestrar que las circunferencias circunscritas a los triángulos $BPO$, $COP$ y $PQR$ son todas del mismo tamaño.
El problema 6 de la OMM 2005
Como se sabe, uno de los 6 problemas del concurso nacional de la Olimpiada Mexicana de Matemáticas es muy difícil –incluso para aquellos concursantes que han tenido un buen entrenamiento. He aquí el enunciado del problema 6 del concurso nacional de 2005.
Sea $ABC$ un triángulo y $AD$ la bisectriz del ángulo $BAC$, con $D$ sobre $BC$. Sea $E$ un punto sobre el segmento $BC$ tal que $BD = EC$. Por $E$ traza $l$ la recta paralela a $AD$ y considera un punto $P$ sobre $l$ y dentro del triángulo. Sea $G$ el punto donde la recta $BP$ corta al lado $AC$ y sea $F$ el punto donde la recta $CP$ corta al lado $AB$. Muestra que $BF = CG$.
Triángulo Rectángulo 2
Sea ABC un triángulo rectángulo con ángulo recto en C, denotemos con R al punto donde la circunferencia inscrita es tangente al lado BC. Pruebese que $ AR \cdot RB $ es igual al área de ABC.