Problemas
También puedes compartirnos alguno de tus problemas favoritos:
Problema 1(IMO 2011)
Para cualquier conjunto de cuatro enteros positivos distintos se denota la suma con
Problema 5 (IMO 2011)
Sea $f$ una función de los enteros a los enteros positivos. Suponga que, para cualesquiera dos enteros $m,n$, la diferencia $f(m)-f(n)$ es divisible entre $f(m-n)$. Demostrar que, para todos los enteros $m$ y $n$ con $f(m)\leq f(n)$, el número $f(n)$ es divisible entre $f(m)$.
Problema 4 (IMO 2011)
Sea $n>0$ un entero. Se tiene disponible una balanza y $n$ pesas de pesos $2^0,2^1,2^2,\ldots,2^{n-1}$. Debemos colocar cada una de las pesas en la balanza, una después de otra, de tal manera que el lado derecho nunca sea más pesado que el izquierdo. En cada paso elegimos una de las pesas que aún no ha sido colocada en la balanza, y la colocamos en alguno de los dos lados, hasta que todas las pesas han sido colocadas. Determinar el número de formas en que eso puede hacerse.
Reflexión de pies de alturas (P6)
Sea $ABC$ un triángulo acutángulo y sean $D$, $E$ y $F$ los pies de las alturas desde $A$, $B$ y $C$, respectivamente. Sean $Y$ y $Z$ los pies de las perpendiculares desde $B$ y $C$ sobre $FD$ y $DE$, respectivamente. Sea $F_1$ la reflexión de $F$ con respecto a $E$ y $E_1$ reflexión de $E$ respecto a $F$. Si $3EF = FD+DE$ demuestra que $\angle BZF_1 = \angle CYE_1$.
Nota. La reflexión de un punto $P$ respecto a un punto $Q$ es el punto $P_1$ ubicado sobre la recta $PQ$ tal que $Q$ queda entre $P$ y $P_1$, y $PQ = QP_1$
Sistema de ecuaciones en tres variable (P5)
Los números reales positivos $x$, $y$, $z$ son tales que:
$$x+ \frac{y}{z} = y + \frac{z}{x} = z + \frac{x}{y} = 2$$
Determina todos los valores posibles de $x+y+z$.
Desliz tras desliz te lleva a 5 (P3)
Aplicar un desliz a un entero $n \geq 2$ significa tomar cualquier primo $p$ que divida a $n$ y remplazar $n$ por $\frac{n + p^2}{p}$.
Se comienza con un entero cualquiera mayor o igual que $5$ y se le aplica un desliz. Al número así obtenido se le aplica un desliz, y así sucesivamente se siguen aplicando deslices. Demuestra que sin importar los deslices aplicados, en algún momento se obtiene el número 5.
Triángulo escaleno (P2)
Sea $ABC$ un triángulo escaleno, $D$ el pie de la altura desde $A$, $E$ la intersección del lado $AC$ con la bisectriz del lado $\angle ABC$, y $F$ un punto sobre el lado $AB$. Sea $O$ el circuncentro del triángulo $ABC$ y sean $X$, $Y$ y $Z$ los puntos donde se cortan las rectas $AD$ con $BE$, $BE$ con $CF$, $CF$ con $AD$, respectivamente. Si $XYZ$ es un triángulo equilátero, demuestra que uno de los triángulos $OXY$, $OYZ$, $OZX$ es un triángulo equilátero.
Homotecia en un isósceles
Considere un triángulo $ABC$ con $AB=AC$, y sea $D$ el punto medio de $BC$. La circunferencia de diámetro $AD$ corta el lado $AB$ en $B'$ y el lado $AC$ en $C'$. El circuncírculo de $ABC$, con centro en $O,$ es tangente al lado $AB$ en $P$ y al lado $AC$ en $Q$. Si llamamos $M$ al punto medio de $PQ$, demostrar:
- $B'M$ es paralelo a $BO$
- $M$ es equidistante de los lados del triángulo $AB'C'$
Dos cuerdas por el punto medio de una cuerda
Sea $AB$ una cuerda que no pasa por el centro del círculo y considere dos cuerdas $CD,EF$ que se cortan en el punto medio $P$ de $AB$. Demostrar que si las tangentes a la circunferencia en $C$ y $D$ se cortan en $Q$, y las tangentes en $E$ y $F$ se cortan en $R$, entonces $QR$ es paralela a $AB$.
Construcción de las simedianas
Considérese el circuncírculo del triángulo $ABC$. Demostrar que si $D$ es la intersección de las tangentes al circuncírculo por $B$ y $C$, entonces $AD$ es el reflejo de la mediana del triángulo por $A$, en el espejo de la bisectriz de $A$.
Demostrar que un cuadrilátero es paralelogramo (Problema 5, OIM)
En un triángulo acutángulo ABC sean AE y BF dos alturas, y sea H el ortocentro. La recta simétrica de AE respecto de la bisectriz (interior) del ángulo en A y la recta simétrica de BF respecto de la bisectriz (interior) del ángulo en B se intersecan en un punto O. Las rectas AE y AO cortan por segunda vez a la circunferencia circunscrita al triángulo ABC en los puntos M y N, respectivamente.
Sean: P, la intersección de BC con HN; R, la intersección de BC con OM; y S, la intersección de HR con OP.
Demostrar que AHSO es un paralelogramo.
Tres circunferencias con un punto común. (Problema 2, OIM)
Con centro en el incentro I, de un triángulo ABC se traza una circunferencia que corta en dos puntos a cada uno de los tres lados del triángulo: al segmento BC en D y P (siendo D el más cercano a B); al segmento CA en E y Q (siendo E el más cercano a C), y al segmento AB en F y R (siendo F el más cercano a A).
Sea S el punto de intersección de las diagonales del cuadrilátero EQFR. Sea T el punto de intersección de las diagonales del cuadrilátero FRDP. Sea U el punto de intersección de las diagonales del cuadrilátero DPEQ.
Caracterización de enteros con parte entera (Problema 1, OIM)
Sea $r \geq 1$ un número real que cumple la siguiente propiedad:
Para cada pareja de números enteros positivos $m$ y $n$, con $n$ múltiplo de $m$, se tiene que $\lfloor nr \rfloor$ es múltiplo de $\lfloor mr \rfloor$.
Probar que $r$ es un numero entero.
Nota: Si $x$ es un numero real, denotamos por $\lfloor x \rfloor$ el mayor entero menor o igual que $x$.
Divisibilidad entre el producto de tres primos (P6)
Sean $p,q,r$ números primos positivos distintos. Muestra que si $pqr$ divide a $$(pq)^r+(qr)^p+(rp)^q-1$$ entonces $(pqr)^3$ divide a $$3((pq)^r+(qr)^p+(rp)^q-1)$$
Circunferencia por ortocentro y dos vértices de un acutángulo (P5)
Dos circunferencias tangentes exteriormente (P3)
Sean $ C_1 $ y $ C_2 $ dos circunferencias tangentes exteriormente en un punto $ A $. Se traza una recta tangente a $ C_1 $ en $ B $ y secante a $ C_2 $ en $ C $ y $ D $; luego se prolonga el segmento $ AB $ hasta intersecar a $ C_2 $ en un punto $ E $. Sea $ F $ el punto medio del arco $ CD $ sobre $ C_2 $ que no contiene a $ E $ y sea $ H $ la intersección de $ BF $ con $ C_2 $. Muestra que $ CD,AF $ y $ EH $ son concurrentes.
Cambios de estado de focos en un tablero (P2)
En cada casilla de un tablero $ n\times n $hay un foco. Inicialmente todos los focos están apagados. En un paso, se permite cambiar el estado de todos los focos en una fila o de todos los focos en una columna (los focos prendidos se apagan y los focos apagados se prenden). Muestra que si después de cierta cantidad de pasos hay uno o más focos prendidos entonces en ese momento hay al menos n focos prendidos.
La amistad es una relación simétrica
En un grupo de personas, cada dos de ellas tiene exactamente un amigo en común en el grupo. Prueba que hay una persona que es amiga de todas las demás personas en el grupo. (Nota: la amistad es mutua, es decir, si X es amigo de Y, entonces Y es amigo de X.)
Puntos en la base de un isósceles
En la base $BC$ del isósceles $ABC$ (con $AB=AC$) se eligen los puntos $M,N$ en el orden $B,M,N,C$. Demostrar que, si existe un punto $P$ tal que $MP=BM, PN=NC$ y $\angle{MPN}=2\angle{CBA}$ entonces $2\angle{MAN}+\angle{MPN}=180$
Triángulo dividible
En un triángulo isósceles $ABC$, con $AB=AC$ y ángulo en A de 20 grados, los puntos $D$ en $AC$ y $E$ en $AB$ son tales que $\angle{DBC}=60$ y $\angle{ECB}=50$. Encontrar, con prueba, la medida del $\angle{EDB}$
