Problemas
También puedes compartirnos alguno de tus problemas favoritos:
Dos circunferencias tangentes exteriormente (P3)
Sean $ C_1 $ y $ C_2 $ dos circunferencias tangentes exteriormente en un punto $ A $. Se traza una recta tangente a $ C_1 $ en $ B $ y secante a $ C_2 $ en $ C $ y $ D $; luego se prolonga el segmento $ AB $ hasta intersecar a $ C_2 $ en un punto $ E $. Sea $ F $ el punto medio del arco $ CD $ sobre $ C_2 $ que no contiene a $ E $ y sea $ H $ la intersección de $ BF $ con $ C_2 $. Muestra que $ CD,AF $ y $ EH $ son concurrentes.
Caracterización de alturas de un acutángulo
En el triángulo acutángulo $ABC$, los puntos $D,E,F$, ubicados respectivamente en los lados $BC,CA,AB$, son tales que $$CD/CE=CA/CB$$ $$AE/AF=AB/AC$$ $$BF/BD=BC/BA$$ Demostrar que $AD,BE,CF$ son alturas.
Incentro y bisectrices
En el triángulo $ABC$, el ángulo $BAC$ mide 60 grados. La bisectriz del ángulo $ABC$ corta al lado $AC$ en $X$ y la bisectriz del ángulo $BCA$ corta al lado $AB$ en $Y$. Demuestra que si $I$ es el incentro del triángulo $ABC$, entonces $IX=IY$
¿Cómo se prueba paralelismo?
¿Cómo se demuestra perpendicularidad?
En los lados $CA$ y $AB$ del triángulo equilátero $ABC$, se eligen respectivamente los puntos $D$ y $E$, de tal manera que $2BE=EA$ y $2AD=DC$. Si P es el punto de intersección de $CE$ y $BD$, demostrar que $AP$ es perpendicular a $CE$.
Triángulo conocido
Dos lados de un triángulo forman un ángulo de 60 grados, y uno mide el doble que el otro. ¿Cuánto miden los otros dos ángulos? Justifica tu respuesta.
Puntos en la base de un isósceles
En la base $BC$ del isósceles $ABC$ (con $AB=AC$) se eligen los puntos $M,N$ en el orden $B,M,N,C$. Demostrar que, si existe un punto $P$ tal que $MP=BM, PN=NC$ y $\angle{MPN}=2\angle{CBA}$ entonces $2\angle{MAN}+\angle{MPN}=180$
Puntos en la hipotenusa de un isósceles rectángulo
En la hipotenusa $BC$ del triángulo isósceles rectángulo $ABC$ se han elegido los puntos $M,N$ en el orden $B,M,N,C$, de tal manera que $BM^2+NC^2=MN^2$. Encontrar, con prueba, la medida del ángulo $\angle{MAN}$
Medida de un ángulo: elemental pero...
Los ángulos en la base $BC$ del isósceles $ABC$ miden 40 grados. El lado $AB$ se prolonga hasta el punto $D$ de manera que $B$ quede entre $A$ y $D$ y $AD=BC$. ¿Cuánto mide el ángulo $BCD$?
Puntos medios, líneas medias e isósceles rectángulos
Sean $D,E$ puntos en el exterior del triángulo $ABC$ tales que los triángulos $ABD$ y $ACE$ son isósceles rectángulos en $D$ y $E$, respectivamente. Demostrar que si $F$ es punto medio de $BC$, entonces el triángulo $DEF$ es isósceles rectángulo en $F$
Circuncírculo de equilátero
Sea $M$ un punto en el arco $AB$ del circuncírculo del triángulo equilátero $ABC$. Demostrar que $AM+MB=MC$.
Triángulo dividible
En un triángulo isósceles $ABC$, con $AB=AC$ y ángulo en A de 20 grados, los puntos $D$ en $AC$ y $E$ en $AB$ son tales que $\angle{DBC}=60$ y $\angle{ECB}=50$. Encontrar, con prueba, la medida del $\angle{EDB}$
No todos los triángulos son isósceles
Demostrar que, en un triángulo ABC, la bisectriz del ángulo A y la mediatriz del lado BC concurren en el circuncírculo de ABC.
Uno de "si y sólo si" con escaleno
Sea $ABC$ un triángulo tal que $AB>AC>BC$. Sea $D$ un punto sobre el lado $AB$ de tal manera que $CD = BC$, y sea $M$ el punto medio del lado $AC$. Muestra que $BD = AC$ si y sólo si $\angle{BAC} = 2\angle{ABM}.$
P5 OMM 2006. Altura de triángulo pedal
Sean $ABC$ un triángulo acutángulo y, $AD, BE$ y $CF$ sus alturas. La circunferencia con diámetro $AD$ corta a los lados $AB$ y $AC$ en $M$ y $N$, respectivamente. Sean $P$ y $Q$ los puntos de intersección de $AD$ con $EF$ y $MN$, respectivamente. Demuestra que $Q$ es el punto medio de $PD$.
P2 OMM 2006. Semejantes si y sólo si ángulo de 60
Sea $ABC$ un triángulo rectángulo con ángulo recto en $A$, tal que $AB < AC$. Sea $M$ el punto medio de $BC$ y $D$ la intersección de $AC$ con la perpendicular a $BC$ que pasa por $M$. Sea $E$ la intersección de la paralela a $AC$ que pasa por $M$ con la perpendicular a $BD$ que pasa por $B$. Demuestra que los triángulos $AEM$ y $MCA$ son semejantes si y sólo si $\angle ABC = 60°$.
P6 OMM 2005. Un punto en la paralela a la bisectriz
Sea $ABC$ un triángulo y $AD$ la bisectriz del ángulo $\angle BAC$, con $D$ sobre $BC$. Sea $E$ un punto sobre el segmento $BC$ tal que $BD=EC$. Por $E$ traza la recta $l$ paralela a $AD$ y considera un punto $P$ sobre $l$ y dentro del triángulo. Sea $G$ el punto donde la recta $BP$ corta al lado $AC$ y sea $F$ el punto donde la recta $CP$ corta al lado $AB$. Muestra que $BF=CG$)
P1 OMM 2005. Circuncírculo en circuncírculo
Sea $O$ el centro de la circunferencia circunscrita al triángulo $ABC$, y sea $P$ un punto cualquiera sobre el segmento $BC$ ($P \neq B$ y $P \neq C$). Supón que la circunferencia circunscrita al triángulo $BPO$ corta al segmento $AB$ en $R$ ($R \neq A$ y $R \neq B$) y que la circunferencia circunscrita al triángulo $COP$ corta al segmento $CA$ en el punto $Q$ ($Q \neq C$ y $Q \neq A$).
- (i) Considera el triángulo $PQR$; muestra que es semejante al triángulo $ABC$ y que su ortocentro es $O$.
- (ii) Muestra que las circunferencias circunscritas a los triángulos $BPO, COP$ y $PQR$ son todas del mismo tamaño.
P5 OMM 2004. Dos circunferencias
Sean $\alpha$ y $\beta$ dos circunferencias tales que el centro $O$ de $\beta$ está sobre $\alpha$. Sean $C$ y $D$ los dos puntos de intersección de las circunferencias. Se toman un punto $A$ sobre $\alpha$ y un punto $B$ sobre $\beta$ tales que $AC$ es tangente a $\beta$ en $C$ y $BC$ es tangente a $\alpha$ en el mismo punto $C$. El segmento $AB$ corta de nuevo a $\beta$ en $E$ y ese mismo segmento corta de nuevo a $\alpha$ en $F$. La recta $CE$ vuelve a cortar a $\alpha$ en $G$ y la recta $CF$ corta a la recta $GD$ en $H$. Prueba que el punto de intersección de $GO$ y $EH$ es el centro de la circunferencia circunscrita al triángulo $DEF$.
P3 OMM 2004. Configuración con incírculo y punto medio
Sean $Z,Y$ los puntos de tangencia del incírculo del triángulo $ABC$ con los lados $AB,CA,$ respectivamente. La paralela a $YZ$ por el punto medio $M$ del lado $BC,$ corta a $CA$ en $N$. Sea $L$ el punto sobre $CA$ tal que $NL = AB$ (y $L$ del mismo lado de $N$ que $A$). La recta $ML$ corta a $AB$ en $K$. Muestra que $KA = NC$.
