Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos:
Problema

¿Trazo auxiliar? OK Pero... ¿cómo lo descubres?

Enviado por jmd el 13 de Septiembre de 2009 - 08:22.

En un triángulo isósceles AOB, rectángulo en O, se eligen los puntos P,Q,S en los lados OB,OA,AB, respectivamente, y un punto R interior al triángulo, de tal manera que el cuadrilátero PQRS sea un cuadrado. Si la razón de áreas entre el cuadrado y el triángulo es 2/5, calcular la razón OP/OQ.

Problema

Cuadrilátero en un cubo

Enviado por jmd el 28 de Agosto de 2009 - 07:45.

En un cubo de arista 6 los puntos medios B,D de dos aristas opuestas, y dos vértices opuestos A,C pero no en las aristas de los puntos medios B,D,  forman un cuadrilátero ABCD. Encontrar el área de ese cuadrilátero.

Problema

Semicírculo y la descomposición en dos sumandos de un segmento.

Enviado por arbiter-117 el 16 de Agosto de 2009 - 23:18.

Sea $$BC$ el diametro de una semicirculo y sea $A$ el punto medio del semicirculo. Sea M un punto sobre el arco $AC$. Seam $P$ y $Q$ los pies de las perpendiculares desde $A$ y C a la linea $BM$, respectivamente.

Demustra que $BP=PQ+QC$

Problema

Áreas enteras de triángulos

Enviado por jmd el 15 de Agosto de 2009 - 05:59.

El área del triángulo $ ABC $ es un entero. Sobre los lados $ BC$ y $AC$ se eligen los puintos $X$ y $Y$, respectivamente. Los segmentos $AX$ y $ BY$ se cortan en un punto $P$ dentro del triángulo $ ABC $. El área de $BPX$ es 1, la de $APY$ es 2, y la de $APB$ es un entero. Encontrar el área del triángulo $ABC.$

Problema

Segmentos iguales y colinealidad

Enviado por Fernando Mtz. G. el 9 de Agosto de 2009 - 14:01.

Sea ABC un triangulo, M el punto medio de CA, P el punto donde la bisectriz desde C intersecta a AB; E y Q son los puntos donde una ceviana desde A intersecta a la bisectriz y al lado BC, respectivamnete (Q no esta en la prolongacion de BC). Demuestra que los segmentos PQ y CQ son iguales, si y solo si B, E y M son colineales.

Problema

Cuadrilátero cícliclo dentro de un cuadrilátero circunscrito

Enviado por jesus el 2 de Agosto de 2009 - 21:08.

Sea ABCD un cuadrilátero para el cuál existen cuatro puntos P, Q, R y S sobre los lados AB, BC, CD y DA respectivamente y tales que PB=BQ, QC = CR, RD = DS y  SA = AP. Demuestra que:

Problema

IMO4_2009_invertido

Enviado por jmd el 30 de Julio de 2009 - 10:12.

Sean ABC un triángulo isósceles rectángulo en A, J su incentro y AD, BE las bisectrices de los ángulos A y B, respectivamente. La altura AD es tangente al incírculo del triángulo ADC (con incentro en I) en P y al lado CA en Q. Demostrar que:

Problema

Equilátero seccionado (3G, take_home_1)

Enviado por jmd el 26 de Julio de 2009 - 15:27.

Sea ABC un triángulo equilátero y A’, B’ , C’, puntos sobre los lados BC, CA y AB, respectivamente, tales que $$AC'/C'B=BA'/A'C=CB'/B'A=2$$ Las intersecciones de los segmentos AA’, BB’ y CC’ determinan un triángulo interior, digamos, DEF.

Problema

Una propiedad trivial de la potencia de un punto

Enviado por jmd el 26 de Julio de 2009 - 08:05.

Sean dados tres puntos distintos O, P, Q en el plano. Demostrar que OP=OQ si y sólo si P y Q tienen la misma potencia respecto a un círculo cualquiera con centro en O.

Problema

IMO 2009 Problema 2

Enviado por Luis Brandon el 20 de Julio de 2009 - 19:11.

Sean ABC un triángulo de circuncentro O, P y Q puntos sobre AB y AC, respectivamente, y K, L, M los puntos medios de BQ, CP y PQ, respectivamente. Si el circuncírculo del triangulo KLM es tangente a PQ, demostrar que OP=OQ.

Problema

IMO 2009 Problema 4

Enviado por Luis Brandon el 20 de Julio de 2009 - 09:44.

En un triángulo $ ABC $, donde $AB=AC$, los bisectrices internas de $\angle{A}$ y $\angle{B}$ cortan a los lados $ BC $ y $AC$ en $D$ y $E$, respectivamente. Sea $I$ el incentro del triángulo $ADC$. Supongamos que $\angle{IEB}=45$. Encontrar todos los valores posibles de $\angle{A}$.

Problema

Probar isósceles

Enviado por jmd el 19 de Julio de 2009 - 19:15.

En una semicircuferenica de diámetro AB se elige un punto D y se baja una perpendicular al diámetro AB cortándolo en C. En el espacio descrito por DC, CB y el arco BD se inscribe un círculo tangente a CD en L, a BC en J y al arco BD en K. Demostrar que AD=AJ.

Problema

Potencia de un punto y circunferencias ortogonales

Enviado por jmd el 18 de Julio de 2009 - 07:19.

Sean dados una circunferencia c de radio r y centro O, y dos puntos M y M' tales que $OM\cdot OM'=r^2$ (i.e., inversos uno del otro respecto a c). Demostrar que cualquier circunferencia c' que pase por M y M' es ortogonal a c.

Problema

Condición necesaria y suficiente para cíclicos

Enviado por jmd el 18 de Julio de 2009 - 07:03.

Sea PQRS un cuadrilátero tal que sus lados opuestos PR y QS se cortan en un punto T. Demostrar que PQRS es cuadrilátero cíclico si y sólo si $TR\cdot TP=TS\cdot TQ.$

 

Problema

El lugar geométrico de la reflexión de un punto

Enviado por jesus el 17 de Julio de 2009 - 10:59.

Sean $ P$ un punto en el interior de una circunferencia $\mathcal{C}$ y $ M$ un punto sobre $\mathcal{C}$. Definamos $ N$ el punto sobre $\mathcal{C}$ tal que el ángulo $\measuredangle MPN = 90^{\circ}$ (en sentido contrario de las manecillas del reloj). Llamemos $P'$ el punto que resulta de reflejar $ P$ con respecto a $MN$.

Problema

Construcción de una circunferencia ortogonal

Enviado por jmd el 17 de Julio de 2009 - 10:16.

Sea dada una circunferencia $c$. Demostrar que el siguiente procedimiento produce una circunferencia ortogonal a $c$ con centro en un punto $P$ fuera de $c$.
1) Trazamos las tangentes a $c$ desde $P$ ubicando los puntos de tangencia $T$ y $T'$.
2) Trazamos la circunferencia con centro en $P$ y radio $PT$. Esta es la circunferencia ortogonal pedida.

Problema

Caracterización del eje radical

Enviado por jmd el 16 de Julio de 2009 - 21:20.

Demostrar que el eje radical de dos circunferencias es el lugar geométrico de los puntos que cumplen la propiedad de que el producto de la suma por la diferencia de sus distancias a los centros es una constante.

Problema

Valor de la potencia de un punto

Enviado por jmd el 16 de Julio de 2009 - 18:41.

Demostrar que la potencia de un punto $P$ respecto a la circunferencia $c$ con centro en $O$ y radio $ r $ es $PO^2-r^2$

 

Problema

Construcción del inverso

Enviado por jmd el 16 de Julio de 2009 - 10:37.

Sea dada una circunferencia c de centro O y radio r, y un punto P fuera del círculo. Demostrar que el siguiente procedimiento produce el inverso P' de P con respecto a la circunferencia c.

1) Trazar la recta OP.
2) Trazar una de las tangentes desde P a c, y llamar T al punto de tangencia.

Problema

Trazar una tangente a una circunferencia

Enviado por jmd el 16 de Julio de 2009 - 10:35.

Sea dada una circunferencia c de centro O y radio r, y un punto P fuera del círculo. Demostrar que el siguiente procedimiento produce el punto de tangencia T de la tangente que pasa por P.

1) Trazar el segmento OP.
2) Trazar la circunferencia de diámetro OP y llamar T a uno de los puntos de intersección con c.