Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos:
Problema

Homotecia en un isósceles

Enviado por jmd el 19 de Junio de 2011 - 09:33.

 Considere un triángulo $ABC$ con $AB=AC$, y sea $D$ el punto medio de $BC$. La circunferencia de diámetro $AD$ corta el lado $AB$ en $B'$ y el lado $AC$ en $C'$. El circuncírculo de $ABC$, con centro en $O,$ es tangente al lado $AB$ en $P$ y al lado $AC$ en $Q$. Si llamamos $M$ al punto medio de $PQ$, demostrar:

  • $B'M$ es paralelo a $BO$
  • $M$ es equidistante de los lados del triángulo $AB'C'$
Problema

Dos cuerdas por el punto medio de una cuerda

Enviado por jmd el 13 de Junio de 2011 - 17:30.

Sea $AB$ una cuerda que no pasa por el centro del círculo y considere dos cuerdas $CD,EF$ que se cortan en el punto medio $P$ de $AB$. Demostrar que si las tangentes a la circunferencia en $C$ y $D$ se cortan en $Q$, y las tangentes en $E$ y $F$ se cortan en $R$, entonces $QR$ es paralela a $AB$.

Problema

Criterio para establecer cíclico con potencia de un punto

Enviado por jmd el 13 de Junio de 2011 - 17:28.

 Si las rectas $AB,CD$ se cortan en $P$ y $PA\cdot{PB}=PC\cdot{PD}$, entonces los puntos $A,B,C,D$ pertenecen a una misma circunferencia. Demostrarlo.

Problema

Bisectriz, dos triángulos, circuncírculos, potencia...

Enviado por jmd el 13 de Junio de 2011 - 17:26.

La bisectriz del ángulo $B$ del triángulo $ABC$ corta a $CA$ en $D$. El circuncírculo del triángulo $BCD$ corta el lado $AB$ en $E$, y el circuncírculo del triángulo $ABD$ corta al lado $BC$ en $F$. Demostrar que $AE=CF$.

Problema

Dos homotecias en un trapecio

Enviado por jmd el 13 de Junio de 2011 - 11:52.

Las prolongaciones de los lados $AB$ y $CD$ de un trapecio se intersecan en $K$, y sus diagonales en $L$. Si $M,N$ son los puntos medios de de las bases, demostrar que los puntos $K,L,M,N$ están en una misma recta.

Problema

Paralelogramo de baricentros

Enviado por jmd el 13 de Junio de 2011 - 11:51.

Las diagonales de un cuadrilátero convexo dividen a éste en cuatro triángulos. Demostrar que sus baricentros forman un paralelogramo.

Problema

Transformación geométrica de una circunferencia

Enviado por jmd el 26 de Mayo de 2011 - 17:40.

 Sean dadas dos circunferencias de radios diferentes y una afuera de la otra, y $H$ la intersección de sus tangentes exteriores comunes. Demostrar que para cualquier punto $A$ en una de las circunferencias, existe un punto $B$ en la otra de tal manera que $HA\cdot{HB}=HP\cdot{HQ}$, donde $P,Q$ son los puntos de tangencia de una de las tangentes comunes.

Problema

Transformación geométrica de una recta

Enviado por jmd el 26 de Mayo de 2011 - 17:37.

Sean dadas una circunferencia de radio $r$ y centro $O$, y una recta $l$. Encontrar el lugar geométrico de los puntos $Y$ tales que $OX\cdot OY=r^2$, cuando $X$ se mueve sobre $l$.

Problema

Transformación geométrica de un punto

Enviado por jmd el 25 de Mayo de 2011 - 05:01.

Sean dados una circunferencia de centro $O$ y radio $r$, y un punto $A$ en su interior distinto de $O$. Encontrar un punto $B$ en el plano de tal manera que $OA\cdot{OB}=r^2$. Justifica tu respuesta demostrando la validez del procedimiento que ubica el punto $B$.

 

Problema

Construcción de las simedianas

Enviado por jmd el 20 de Mayo de 2011 - 04:54.

Considérese el circuncírculo del triángulo $ABC$. Demostrar que si $D$ es la intersección de las tangentes al circuncírculo por $B$ y $C$, entonces $AD$ es el reflejo de la mediana del triángulo por $A$, en el espejo de la bisectriz de $A$.

Problema

Antiparalelas

Enviado por jmd el 16 de Mayo de 2011 - 10:57.

Dos rectas se dicen antiparalelas, respecto a un ángulo de referencia, si forman el mismo ángulo en lados opuestos de la bisectriz de ese ángulo.

Demostrar que:

Problema

La clave está en la figura

Enviado por jmd el 16 de Mayo de 2011 - 05:27.

En el triángulo $ABC$, rectángulo en $C$, la bisectriz de $A$ corta a $BC$ en $P$ y la bisectriz de $B$ corta a $CA$ en $Q$. Sean $M$ y $N$ las proyecciones de $P$ y $Q$, respectivamente, sobre el lado $AB$ . Calcular la medida del ángulo $MCN$.

Problema

Una propiedad banal de dos isogonales

Enviado por jmd el 6 de Mayo de 2011 - 13:51.

 Sea $ABC$ un triángulo y $\Gamma$ su circuncírculo con centro $O$. La altura de $A$ y el radio $OA$ forman un ángulo cuya medida es la diferencia de las de $B$ y $C$

Problema

Circuncentro y ortocentro: una propiedad métrica

Enviado por jmd el 6 de Mayo de 2011 - 12:50.

Sean $H$ el ortocentro y $O$ el circuncentro del triángulo $ABC$. Si $M$ es el punto medio del lado $BC$, entonces $AH=2MO$. Demostrarlo.

Problema

Construcción de un triángulo

Enviado por jmd el 1 de Mayo de 2011 - 20:21.

Construir el triángulo $ABC$ dadas las longitudes $m_a$ de su mediana desde $A$, $d_a$ de la bisectriz del ángulo $A$, y $h_a$ de la altura del vértice $A$ (respecto a su lado opuesto $BC$).

Problema

Isogonales: iso (igual) gono (ángulo)

Enviado por jmd el 30 de Abril de 2011 - 05:51.

 Demostrar que, en un triángulo $ABC$, la altura de cualquier vértice y la recta que pasa por él y el circuncentro forman el mismo ángulo con la bisectriz (de ese mismo vértice).

Problema

Reflejos en el espejo de la bisectiz

Enviado por jmd el 29 de Abril de 2011 - 22:07.

 Dentro del triángulo $ABC$, considere un punto $P$, y $C'$ y $B'$, los pies de las perpendiculares bajadas desde $P$ a los lados $AB$ y AC, respectivamente. Demostrar que si $Q$ es un punto tal que $C'PB'Q$ es paralelogramo, entonces las rectas $AP$ y $AQ$ son simétricas respecto a la bisectriz del ángulo $A$.

Problema

Tres vecinas

Enviado por jmd el 18 de Abril de 2011 - 15:41.

A: Al departamento de al lado se acaban de cambiar tres mujeres -según me lo dijo C.

B: Ya sé. Y también dice algo más interesante: en promedio su edad es 24.
 
C: Cierto. Y les tengo un problema para MaTeTaM. ¿Cuál es la posible edad de la mayor, si la edad mediana es 4?
Problema

Regla del 41 para ninis

Enviado por jmd el 17 de Abril de 2011 - 10:26.

En el país XYZ se aprobó una ley de "jubilación" de ninis (jóvenes que ni estudian ni trabajan). Básicamente, la regla para la "jubilación" es que el joven nini recibirá una pensión estatal de tres salarios mínimos de por vida si sigue siendo joven (menos de 30) y su edad más los años que se ha mantenido nini (sin estudiar ni trabajar) es al menos 41 años. Calcular la edad en que un adolescente de 19 años logrará la pensión si tiene 4 años de nini.

Problema

Volumen de una alberca

Enviado por jmd el 17 de Abril de 2011 - 09:19.

Una alberca, cuyo espejo del agua es un rectángulo $a\times{b}$, tiene el fondo inclinado también rectangular de manera que la profundidad en un extremo ($h$) es un metro menor que la del otro. Obtener una fórmula para calcular la capacidad de la alberca en metros cúbicos y usarla para $h=1,a=3,b=6$. Nota: puedes suponer que $a,b,h$ están expresadas en metros y las paredes son verticales.