Problemas
También puedes compartirnos alguno de tus problemas favoritos:
Eliges, sumas, y te vas...
Sean $n, r$ dos enteros positivos. Se desea construir $r$ subconjuntos $A_1, A_2,\ldots, A_r$ de $\{0, 1,\ldots, n-1\}$ cada uno de ellos con exactamente $k$ elementos y tales que, para cada entero $x$, $0\leq x \leq n-1$, existen $x_1$ en $A_1$, $x_2$ en $A_2$ ,... , $x_r$ en $A_r$ (un elemento en cada conjunto) con $x = x_1 + x_2\dots+ x_r$. Hallar el menor valor posible de $k$ en función de $n$ y $r$.
Transformación de acutángulo a equilátero (en el circuncírculo de aquél)
Se dan los puntos $A, B, C$ sobre una circunferencia $K$ de manera que el triángulo $ABC$ sea acutángulo. Sea $P$ un punto interior a $K$. Se trazan las rectas $AP, BP, CP$, que cortan de nuevo a la circunferencia en $X, Y, Z$. Determinar el punto $P$ que hace equilátero al triángulo $XYZ$.
Tablero lampareado
En cada casilla de un tablero $n\times n$ hay una lámpara. Al ser tocada una lámpara, cambian de estado ella misma y todas las lámparas situadas en la fila y la columna que ella determina (las que están encendidas se apagan y las apagadas se encienden). Inicialmente todas están apagadas. Demostrar que siempre es posible, con una sucesión adecuada de toques, lograr que todo el tablero quede encendido y encontrar, en función de $n$, el número mínimo de toques para que se enciendan todas las lámparas.
Cuadrilátero inscriptible y circunscriptible
Dado un cuadrilátero inscrito en una circunferencia, sus vértices se denotan consecutivamente por $A, B, C, D$. Se supone que existe una semicircunferencia con centro en $AB$, tangente a los otros tres lados del cuadrilátero.
- i) Demostrar que $AB = AD + BC$.
- ii) Calcular, en función de $x = AB, y = CD$, el área máxima que puede alcanzar un cuadrilátero que satisface las condiciones del enunciado.
Números "sensatos"
Se dice que un número natural $n$ es "sensato" si existe un entero $r$, con $1 < r < n-1$, tal que la representación de $n$ en base $r$ tiene todas sus cifras iguales. Por ejemplo, 62 y 15 son sensatos, ya que 62 es 222 en base 5 y 15 es 33 en base 4. Demuestre que 1993 no es sensato pero 1994 si lo es.
Enteros "cuates"
Dos números enteros no negativos $a, b$ son "cuates" si $a + b$ tiene solamente ceros y unos en su expresión decimal. Sean $A$ y $B$ dos conjuntos infinitos de enteros no negativos tales que $B$ es el conjunto de todos los números que son "cuates" de todos los elementos de $A$ y $A$ es el conjunto de todos los números que son "cuates" de todos los elementos de $B$. Pruebe que en uno de los conjuntos $A$ o $B$ hay infinitos pares de números $x, y$ tales que $x - y = 1$.
Cardinalidad de un conjunto finito de puntos
Sean $P$ y $Q$ dos puntos distintos en el plano. Denotemos por $m (PQ)$ la mediatriz del segmento $PQ$. Sea $S$ un subconjunto finito del plano, con más de un elemento, que satisface las siguientes propiedades:
- a) Si $P$ y $Q$ están en $S$, entonces $m (PQ)$ intersecta a $S$.
- b) Si $P_1Q_1, P_2Q_2, P_3Q_3$ son tres segmentos diferentes cuyos extremos son puntos de $S$, entonces no existe ningún punto de $S$ en la intersección de las tres líneas $m(P_1Q_1), m(P_2Q_2),m(P_3Q_3$).
Determine el número de puntos que puede tener $S$.
Ejercicio trigonométrico
Sea $ABC$ un triángulo equilátero y $\Gamma$ su círculo inscrito. Si $D$ y $E$ son puntos de los lados $AB$ y $AC$, respectivamente, tales que $DE$ es tangente a $\Gamma$, demuestre que $$\frac{AD}{DB}+\frac{AE}{EC}=1$$
Una forma complicada de definir una función elemental
Sea $N^* = \{1, 2, 3, \ldots \}$. Halle todas las funciones $f: N^* \mapsto N^*$ tales que:
- i) si $x < y$, entonces $f(x) < f(y)$
- ii) $f(y f(x)) = x^2f(xy)$, para todos los $x, y\in N^*$.
¿Cómo se encierra un n-polígono en un paralelogramo?
Muestre que, para cualquier polígono convexo de área uno, existe un paralelogramo de área 2 que lo contiene.
Primos que son diferencia de capicúas consecutivos
Un número natural es capicúa si al escribirlo en notación decimal se puede leer de igual forma de izquierda a derecha y de derecha a izquierda. Ejemplos: 8, 23432, 6446. Sean $x_1 < x_2 < \ldots < x_i < x_{i+1} < ... $ todos los números capicúas. Para cada $i$ sea $y_i=x_{i+1} - x_i$. ¿Cuántos números primos distintos tiene el conjunto $\{y_1, y_2, y_3 \ldots \}$?
¿Cómo era el generalizado de senos?
A partir del triángulo $T$ de vértices $A, B, C$, se construye el hexágono $H$ de vértices $A_1, A_2, B_1, B_2, C_1, C_2$ como se muestra en la figura. Demostrar que
Construcción de un trapecio inscrito
Se dan la circunferencia $\Gamma$ y los números positivos $h, m$ de modo que existe un trapecio $ABCD$, inscrito en $\Gamma$, de altura $h$ y tal que la suma de sus bases $AB$ y $CD$ es $m$. Construir el trapecio $ABCD$.
Dos sucesiones recursivas
Sean $(a_n)$ y $(b_n)$ dos sucesiones de números enteros que verifican las siguientes condiciones:
- i) $a_0 = 0, b_0 = 8$
- ii) $a_{n+2} = 2a_{n+1}-a_n+2, b_{n+2}=2b_{n+1}-b_n$
- iii) $a_n^2+b_n^2$ es un cuadrado perfecto para todo $n$.
Determinar al menos dos valores del par $(a_{1992}, b_{1992})$.
¿Sabes geometría analítica? (alternativa: Stewart)
En un triángulo equilátero $ABC$, cuyo lado tiene longitud 2, se inscribe la circunferencia $\Gamma$.
- a) Demostrar que para todo punto $P$ de $\Gamma$, la suma de los cuadrados de sus distancias a los vértices $A, B$ y $C$ es 5.
- b) Demostrar que para todo punto $P$ de $\Gamma$, es posible construir un triángulo cuyos lados tienen las longitudes de los segmentos $AP, BP$ y $CP$, y cuya área es $\sqrt{3}/4$
Suma de las raíces de un polinomio
Sean dados la colección de $n$ números reales positivos $a_1 < a_2 < a_3 < \ldots < a_n$, y la función$$f(x)=\frac{a_1}{x+a_1}+\frac{a_2}{x+a_2}+\ldots +\frac{a_n}{x+a_n}$$ Determinar la suma de las longitudes de los intervalos, disjuntos dos a dos, formados por todos los valores de $x$ tales que $f(x)\gt 1$.
Suma de una sucesión
Para cada entero positivo $n$, sea $a_n$ el último dígito del número $1+2+3+ ...+n$. Calcular $a_1 + a_2 + a_3 +\ldots+a_{1992}$.
Construir un triángulo (dados ortocentro y dos puntos medios)
Dados 3 puntos no alineados $M, N, P$, sabemos que $M$ y $N$ son puntos medios de dos lados de un triángulo y que $P$ es el punto de intersección de las alturas de dicho triángulo. Construir el triángulo.
¿Puedes maliciar que es suma de dos cuadrados?
Sea $P(X,Y) = 2X^2 - 6XY + 5Y^2$. Diremos que un número entero $A$ es un valor de $P$ si existen números enteros $B$ y $C$ tales que $A = P(B,C)$.
- i) Determinar cuántos elementos de $\{1, 2, 3, ... ,100\}$ son valores de $P$.
- ii) Probar que el producto de valores de $P$ es un valor de $P$.
Combinatoria con números de 3 cifras distintas elegidas de entre 5
Encontrar un número $N$ de cinco cifras diferentes y no nulas, que sea igual a la suma de todos los números de tres cifras distintas que se pueden formar con las cinco cifras de $N$.
