Problemas
También puedes compartirnos alguno de tus problemas favoritos:
P5 OMM 1996. Recorre los cuadros y suma sus números
En una cuadrícula de $n \times n$ se escriben los números del 1 al $n^2$ en el orden habitual (de izquierda a derecha y de arriba a abajo). Como ejemplo se ilustra el caso $n = 3$: $$1 ~2 ~3$$ $$4 ~5 ~6$$ $$7 ~8 ~9$$
Llamemos camino en la cuadrícula a una sucesión de pasos de un cuadro a otro desde el cuadro 1 hasta el $n^2$, de tal manera que en cada paso el movimiento sea hacia la derecha o hacia abajo. Si $C$ es un camino, denotamos por $L(C)$ a la suma de los números por los que pasa el camino $C$.
P3 OMM 1996. Cubrir cuadrícula con dominós con una condición
Demuestra que no es posible cubrir una cuadrícula de 6cm × 6 cm con 28 rectángulos de 2cm × 1cm, de tal manera que cada una de las rectas de longitud 6cm que forman la cuadrícula y que están en el interior de la misma pase por uno de los rectángulos. Demuestra también que sí es posible cubrir una cuadrícula de 6cm × 5cm con 15 rectángulos de 2cm × 1cm de tal manera que cada una de las rectas de 5cm o 6 cm que forman la cuadrícula y que están en el interior de la misma pase por el centro de por lo menos uno de los rectángulos.
P2 OMM 1996. La ficha 1 te prende el foco
Bordeando una mesa circular hay dibujadas 64 casillas y en cada una hay una ficha. Las fichas y las casillas están numeradas del 1 al 64 en orden consecutivo (cada ficha está en la casilla del mismo número). En la parte central de la mesa hay 1996 focos apagados. Cada minuto todas las fichas se desplazan simultáneamente, en forma circular (en el mismo sentido de la numeración), como sigue: la ficha #1 se desplaza una casilla, la ficha #2 se desplaza dos casillas, la ficha #3 se desplaza 3 casillas, etcétera, pudiendo varias casillas ocupar la misma posición.
P6 OMM 1995. Tres operaciones sobre los símbolos de una cuadrícula
Sobre los cuadrados de una cuadrícula de $4x4$ se colocan símbolos 0 y1; estos símbolos se cambian uno por el otro de acuerdo a las siguientes tres operaciones:
La operación (a) cambia los símbolos de todos los elemntos de un renglón.
La operación (b) cambia de símbolos de todos los elementos de una columna.
La operación (c) cambia de símbolos de todos los elementos de una diagonal
(líneas punteadas en la figura).
P5 OMM 1995. Triángulos de igual área en pentágono
Sea $ABCDE$ un pentágono convexo de manera que los triángulos $ABC,BCD, CDE, DEA$ y $EAB$ son todos de igual área. Demuestra que
$$\frac{1}{4} (ABCDE)<(ABC)<\frac{1}{3} (ABCDE)$$.
(Donde el paréntesis denota el área del polígono dentro de él.)
P4 OMM 1995. Con 26 sí, con 27 no
a) Encuentra un subconjunto $B$ del conjunto $A = \{1, 2, 3, \ldots, 40\}$, de manera que $B$ tenga 26 elementos y que ningún producto de dos elementos de $B$ sea un cuadrado perfecto.
b) Demuestra que no se puede obtener un subconjunto de $A$ de 27 elementos con la característica mencionada en el inciso anterior.
P3 OMM 1995. Vértices consecutivos de heptágono regular
Sean $A,B,C,D$ vértices consecutivos de un heptágono regular, y $AL$ y $AM$ las tangentes desde $A$ a la circunferencia de centro $C$ y radio $CB$. Si $N$ es la intersección de $AC$ y $BD$, demuestra que los puntos $L, M$ y $N$ son colineales.
P5 OMM 1994. Cuatro vértices, 4 triángulos, 12 alturas
Sea $ABCD$ un cuadrilátero convexo (cada uno de sus ángulos es menor a 180 grados) y considere los pies de las alturas de los cuatro triángulos que se pueden formar con los vértices $A,B,C$ y $D$. Demuestre que no importa qué cuadrilátero convexo se tome, alguno de estos 12 puntos se encuentra sobre un lado del cuadrilátero.
P6. OMM 1993. El siguiente del producto de 4 consecutivos
Sea $f(x) = x(x+1)(x+2)(x+3)+1$ y $p$ un número primo impar. Pruebe
que existe un entero $ n $ tal que $p$ divide a $f(n)$ si y sólo si existe un entero
$m$ tal que $p$ divide a $m^2 - 5$.
P5. OMM 1993. Intersecciones colineales de circunferencias
Por un punto $O$ de una circunferencia, se tienen tres cuerdas que sirven
como diámetros de tres circunferencias. Además del punto común $O$, las
circunferencias se intersectan por parejas en otros tres puntos. Demuestre
que tales puntos son colineales.
P4. OMM 1993. Recurrencia en dos variables
Para cualquier número entero $n>0$, se define:
1. $f(n, 0) = 1$ y $f(n, n) = 1$
2. $f(n, k) = f(n - 1, k - 1) + f(n - 1, k)$ para $0<k<n$.
¿Cuántos cálculos se tienen que hacer para encontrar el valor de $f(3991, 1993)$,
sin contar aquellos de la forma $f(n, 0)$ y $f(n, n)$?
P6 OMM 1992. Muchas preguntas con un rectángulo
Sea $ABCD$ un rectángulo. Sean $I$ el punto medio de $CD$ y $M$ la intersección de $BI$ con la diagonal $AC$.
- 1. Pruebe que $DM$ pasa por el punto medio de $BC$.
-
2. Sea $E$ el punto exterior al rectángulo tal que $ABE$ sea un triángulo
isósceles y rectángulo en $E$. Además, supongamos que $BC = BE = a$.
Pruebe que $ME$ es bisectriz del ángulo $AMB$. - 3. Calcule el área del cuadrilátero $AEBM$ en función de $A$.
P5 OMM 1992. Desigualdad con suma de radicales
Sean $x, y, z$ números reales positivos tales que $x + y + z = 3$. Si
$$S = \sqrt{2x + 3} + \sqrt{2y + 3} + \sqrt{2z + 3},$$
pruebe que $6 < S \leq 3\sqrt{5}$
P6 OMM 1991. Triángulos en un polígono
En un polígono de $ n $ lados, ($n \geq 4$) se considera una familia $T$ de triángulos, formados con los vértices del polígono, con la propiedad de que cada dos triángulos de la familia cumple alguna de las siguientes dos condiciones:
– No tienen dos vértices en común.
– Tienen dos vértices en común.
Demuestre que $T$ tiene a lo más $ n $ triángulos.
P5 OMM 1991. Suma de cuadrados cuadrado
La suma de los cuadrados de dos números consecutivos puede ser un cuadrado perfecto (por ejemplo $3^2 + 4^2 = 5^2$).
a) Pruebe que la suma de los cuadrados de $m$ enteros consecutivos no puede
ser un cuadrado para $m$ igual a 3 y 6.
b) Encuentre un ejemplo de 11 números consecutivos cuya suma de cuadrados sea un cuadrado perfecto.
P4 OMM 1991. Ocho puntos concíclicos
Considere un cuadrilátero convexo $ABCD$ en el que las diagonales $AC$ y $BD$ se cortan formando ángulo recto. Sean $M, N, R$ y $S$ los puntos medios de los segmentos $AB, BC, CD$ y $AD$, respectivamente. Sean $W,X, Y$ y $Z$ las proyecciones de los puntos $M, N, R$ y $S$ sobre las rectas $DC, AD, AB$ y $BC$, respectivamente. Pruebe que todos los puntos $M, N,R, S, W, X, Y$ y $Z$ están sobre una misma circunferencia.
P3 OMM 1991. Cuatro canicas en una esfera
Se tienen 4 canicas de radio uno colocadas en el espacio de tal manera que
cada una de ellas es tangente a las otras tres. ¿Cuál es el radio de la esfera
más pequeña que contiene a las canicas?
P6. OMM 1990. Una configuración cargada de teoría
Sea $ABC$ un triángulo rectángulo con ángulo recto en $C$. Sea $l$ cualquier recta que pase por $B$ y que corte al lado $AC$ en un punto $E$. Sean $F$ el punto medio de $EC$, $G$ el punto medio de $CB$ y $H$ el pie de la altura de $C$, respecto a $AB$, en el triángulo $ABC$. Si $I$ denota el circuncentro del triángulo $AEH$ (punto de intersección de las mediatrices de los lados), pruebe que los triángulos $IGF$ y $ABC$ son semejantes.
P5. OMM 1990. Baricentro de coordenadas enteras
Si $P_1,P_2,\ldots,P_{19}$ son diecinueve puntos del plano con coordenadas enteras tales que cada tres de ellos son no colineales, demuestre que hay tres con la propiedad de que su baricentro (punto de intersección de las medianas de un triángulo), también tiene coordenadas enteras.
P2. OMM 1990. Relación de inradios
Sea $ABC$ un triángulo rectángulo con ángulo recto en $B$, y $H$ el punto de intersección del lado $AC$ y la altura por $B$. Llamemos $r,r_1,r_2$ a los radios de las circunferencias inscritas en los triángulos $ABC,ABH,HBC$, respectivamente. Encuentre una igualdad que relacione $r,r_1,r_2$.
