Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos:
Problema

OMM 2008, Problema 6

Enviado por jesus el 4 de Mayo de 2009 - 20:03.

Las bisectrices internas de los ángulos A, B y C de un triángulo ABC concurren en I y cortan
al circuncírculo de ABC en L, M y N, respectivamente. La circunferencia de diámetro IL,
corta al lado BC, en D y E; la circunferencia de diámetro IM corta al lado CA en F y G;
la circunferencia de diámetro IN corta al lado AB en H y J. Muestra que D, E, F, G, H,
J están sobre una misma circunferencia.

Problema

IMO 2008, Problema 1

Enviado por Luis Brandon el 4 de Mayo de 2009 - 15:51.

Un triangulo $ ABC $  tiene ortocentro $ H $. La circunferencia con centro en el punto medio de $ BC $, que pasa por $ H $, corta a la recta $ BC $ en $A_1$y$A_2$, de manera similar se definen los puntos $B_1,B_2$ en la recta $CA$ y $C_1,C_2$ en la recta $AB$. Demuestra que los puntos $A_1, A_2, B_1, B_2, C_1, C_2$ estan en una misma circunferencia.

Problema

Problema 8 Geometrense

Enviado por Luis Brandon el 28 de Abril de 2009 - 09:33.

Sean ABC un triángulo y AP, AQ las tangentes desde A a la circunferencia de diámetro BC (P y Q los puntos de tangencia). Muestra que el ortocentro H de ABC está sobre PQ.

Problema

Perpendicular si y sólo si el triángulo es isósceles

Enviado por Luis Brandon el 27 de Abril de 2009 - 20:28.

Sea ABC un triángulo de circuncentro O, sea M el punto medio de AB y E el gravicentro del triángulo AMC. Demostrar que OE y CM son perpendiculares si y sólo si AB=AC

Problema

Perpendiculares

Enviado por Luis Brandon el 12 de Abril de 2009 - 11:14.

Para un triángulo $ ABC $, toma los puntos $ M $ y $ N $ en las extensiones de AB y CB, respectivamente de tal manera que $ M $ y $ N $ estén más cerca de $ B $ que de $ A $ y $ C $, y que $ AM=CN=s $ donde $ s $ denota el semiperímetro. Sea $ K$ el punto diametralmente opuesto a $ B $ e $ I $ el incentro del triángulo $ ABC $.

Problema

Ladrones de la tercera edad

Enviado por jmd el 27 de Febrero de 2009 - 07:23.

"El Carrizos" y "el Mayel", dos ladrones de la tercera edad, han robado un collar circular con $2m$ cuentas de oro y $2n$ cuentas de plata, dispuestas en un orden desconocido.

Problema

Problema 5 OMM 2003

Enviado por jose el 30 de Enero de 2009 - 22:11.

Problema 5. Se escriben en tarjetas todas las parejas de enteros $(a,b)$ con $1\leq a\leq b \leq 2003$. Dos personas juegan con las tarjetas como sigue: cada jugador en su turno elige $(a,b)$ (que se retira del juego) y escribe el producto ab en el pizarrón (ambos jugadores usan el mismo pizarrón). Pierde el jugador que ocasione que el máximo común divisor de los números escritos hasta ese momento sea $1$. ¿Quién tiene la estrategia ganadora? (Es decir, ¿cuál de los dos jugadores puede inventar un método que asegure su tirunfo?)

Problema

Problema 1 OMM 2003

Enviado por jose el 29 de Enero de 2009 - 21:00.

Problema 1. Dado un número $k$ de dos o más cifras, se forma otro
entero $m$ insertando un cero entre las cifras de las unidades y
de las decenas de $k$. Encuentra todos los números $k$ para los
cuales $m$ resulta ser un múltiplo de $k$.

Problema

Cuadrados en cada lado y concurrencia.

Enviado por jesus el 29 de Enero de 2009 - 17:01.

Sobre los lados del triángulo ABC se han dibujado los cuadrados $ \mathcal{C}_A $, $ \mathcal{C}_B $ y $ \mathcal{C}_C $, de tal manera que un lado del cuadrado es un lado del triángulo y el cuadrado no traslapa al triángulo. El cuadrado $ \mathcal{C}_A $ se encuentra sobre BC; $ \mathcal{C}_B $ sobre AC; y $ \mathcal{C}_C $ sobre AB.

Problema

Problema de cíclicos

Enviado por Luis Brandon el 27 de Enero de 2009 - 19:52.

En un triángulo acutángulo, el círculo de diámetro AB intersecta la altura CE y su extensión en M y N, y el círculo de diámetro AC intersecta la altura BD y su extensión en P y Q. Probar que los puntos M, N, P, Q están sobre una misma circunferencia.

(Nota:Este problema es una extensión del problema dos segmentos iguales.)

Problema

Cuerda del incírculo, una mediana y una perpendicular

Enviado por jesus el 22 de Enero de 2009 - 18:04.

Sean P, Q y R los puntos donde la circunferencia inscrita del triángulo ABC toca a los lados BC, CA y AB respectivamente. Llamemos M al punto medio de BC.

Problema

Para trabajar semejanza

Enviado por Luis Brandon el 22 de Enero de 2009 - 17:00.
Sea D el punto de tangencia del incirculo del triangulo ABC con BC, sea E otro punto sobre el incirculo tal que ED es perpendicular con BC, la prolongacion de AE corta en F a BC. Demostrar que BD=CF
Problema

Geometría analítica, un legado cartesiano

Enviado por jmd el 16 de Enero de 2009 - 09:56.

Sean $A, B, C, D$ cuatro puntos distintos sobre una recta, en ese orden. Los círculos de diámetros $AC$ y $BD$ se intersectan en los puntos $X$ y $Y$. La recta $XY$ corta a $BC$ en el punto $Z$. Sea $P$ un punto sobre la recta $XY$, y diferente de $Z$. La recta $CP$ intersecta al círculo de diámetro $AC$ en los puntos $C$ y $M$, y la recta $BP$ intersecta el círculo de diámetro $BD$ en los puntos $B$ y $N$. Demostrar que las rectas $AM$, $DN$ y $XY$ son concurrentes. 

Problema

Simediana, línea media y pies de alturas

Enviado por jesus el 25 de Noviembre de 2008 - 13:33.

Consideremos un triángulo cualquiera ABC. Llamemos P y Q los pies de las alturas trazadas desde B y C respectivamente. Consideremos también $\mathcal{M} $ la línea media opuesta al vértice C; y consideremos $\mathcal{L}$ la simediana trazada desde B. Demuestra que las líneas PQ, $\mathcal{M}$ y $\mathcal{L}$ concurren.

Problema

Problema 2 de la OMM 2008

Enviado por jesus el 17 de Noviembre de 2008 - 14:31.

Considera una circunferencia $\Gamma$, un punto A fuera de $ \Gamma $ y las tangentes AB, AC a $ \Gamma $ desde A, con B y C los puntos de tangencia. Sea P un punto sobre el segmento AB, distinto de A y de B. Considera el punto Q sobre el segmento AC tal que PQ es tangente a $ \Gamma$, y a los puntos R y S que están sobre las rectas AB y AC, respectivamente, de manera que RS es paralela a PQ y tangente a $\Gamma$. Muestra que el producto de las áreas de los triángulos APQ y ARS no depende de la elección del punto P.

Muestra que el producto de las áreas de los triángulos APQ y ARS no depende de la elección del punto P.

Problema

Problema 1 de la OMM 2008

Enviado por jesus el 17 de Noviembre de 2008 - 14:21.

Sean $1=d_1 < d_2 < d_3 \cdots < d_k = n$ los divisores del entero positivo $ n $. Encuentra todos los números $ n $ tales que $n = d_2 ^ 2 + d_3^3$.

Problema

El multiplo de 2000 más pequeño que es suma de los primeros cuadrados

Enviado por jesus el 18 de Octubre de 2008 - 20:18.

Encuentra el número entero $ n > 0 $ más pequeño que satisface que 2000 divide a

$$ 1^2 + 2^2 + \cdots + n^2 $$.

Problema

En sucesión modular busca el ciclo

Enviado por jmd el 5 de Octubre de 2008 - 06:34.

Considere la sucesión $1, 9, 8, 3, 4, 3, \ldots$ en la cual $a_{n+4}$ es el dígito de la unidades de $a_n + a_{n+3},$ para $ n $ entero positivo. Demuestre que $a_{1985}^2 +a_{1986}^2+ \ldots + a_{2000}^2$ es un múltiplo de $ 2 $.

Problema

suma de divisores

Enviado por jmd el 2 de Octubre de 2008 - 08:54.

Demuestre que hay una infinidad de enteros positivos $ n $ tales que la suma de los divisores positivos del número $2008^n-1$ es divisible entre $ n $.


 

Problema

Método del residuo chino

Enviado por jmd el 11 de Septiembre de 2008 - 05:51.

Una compañía de n soldados es tal que:

– n es un número capicúa. (Se lee igual al derecho y al revés. Ejemplo:15651, 9436349.) – Si los soldados se forman de 3 en 3, quedan 2 soldados en la última fila; de 4 en 4, quedan 3 soldados en la última fila; de 5 en 5, quedan 5 soldados en la última fila.

Hallar el menor n que cumple las condiciones y demostrar que hay una infinidad de valores n que las satisfacen.