Problemas
También puedes compartirnos alguno de tus problemas favoritos:
Cuadrado perfecto y Factorial
Demostrar que $n! + 2004$ no es cuadrado perfecto para ningún entero positivo $ n $.
IMO 2008 (Problema 3)
Demuestra que existen infinitos enteros n tales que n2 + 1 tiene un divisor primo mayor que $2n+\sqrt{2n}$.
alturas de un paralelogramo y areas
Un paralelogramo ABCD tiene el angulo en D obtuso. Desde D se bajan perpendiculares a AB y BC, las cuales cortan a estos lados en M y N respectivamente. Si DB=DC=50 y DA=60 encontrar DM+DN.
Cuadrado perfecto
Encontrar todos los enteros positivos de cuatro cifras que son cuadrados perfectos y tales que son de la forma aabb, es decir, las primeras dos cifras se repiten así como las dos últimas.
Estudia después
En el mítin de la prepa $X$, convocado por la planilla “Estudia Después” están programados 5 oradores, digamos $A,B,C,D,E$. Los líderes impusieron la condición de que $A$ debe hablar antes que $E$. ¿De cuántas formas se puede ordenar los oradores?
Subconjuntos guapos
Sea $A=\{1,2,3,4,5,6,7,8,9,10,11 \}$ el conjunto de los primeros 11 enteros positivos. Llamemos guapo a todo subconjunto de $ A $ que cumple que si $2k$ es del subconjunto entonces también son del subconjunto $2k-1$ y $2k+1$. Encontrar el número de subconjuntos guapos de $ A $ que contienen a lo más un número par.
la clave secreta
Sea una clave que cumple las siguientes condiciones:
a) cinco cifras (dígitos)
b) el número es par
c) exactamente uno de los dígitos es impar
d) exactamente una de las cifras se repite, la que se repite es par y aparece en dos posiciones no consecutivas de la clave secreta
¿Cuántas claves (números de 5 cifras) son posibles bajo estas condiciones?
Clave secreta
Clave secreta
a) cinco cifras (dígitos)
b) el número es par
c)exactamente uno de los dígitos es impar
d)exactamente una de las cifras se repite, la que se repite es par y aparece en dos posiciones no consecutivas de la clave secreta
¿Cuántas claves (números de 5 cifras) son posibles bajo estas condiciones?
Lola la trailera
Un día Lola la trailera midió el tiempo que le tomó atravesar un túnel desde que entró a él hasta que salió por completo. Al otro día, ya de regreso traía un contenedor añadido el cual incrementó la longitud del trailer de 6 a 12 metros. Al cruzar el túnel la segunda vez, Lola redujo la velocidad en un 20% y midió el tiempo de nuevo, resultando que se tardó un 50% más que la primera vez. Encontrar la longitud del túnel en metros.
alturas de un paralelogramo y areas
Un paralelogramo ABCD tiene el ángulo en D obtuso. Desde D se bajan perpendiculares a AB y BC, las cuales cortan a estos lados en M y N respectivamente. Si DB=DC=50 y DA=60 encontrar DM+DN.
Dígitos finales, problema casi ateorico
Encontrar el entero positivo n más pequeño para el cual los últimos tres dígitos de 2007n (en la notación usual de base 10) son 837.
Sumar dígitos, problema ateórico
Un estudiante X forma un número entero escribiendo los números del 1 al 82 de manera ascendente, es decir, 1234567891011…808182. Encontrar la suma de los dígitos de este entero. R: 667
Los estudiantes con sombrero - Enunciado
Se han elegido tres estudiantes muy intelegentes para realizar un experimento: José, Valentina y Jesús. Los han acomadado en una fila: al frente, Jesús; atrás de él, Valentina; y al último, José. Les han hecho saber que de un grupo de dos sombreros rojos y tres verdes se elgió uno para cada uno. Como los sombreros fueron puestos al momento de estar formados José puede ver los colores de los sombreros de Valentina y Jesús, pero no el suyo. Valentina puede ver el color del sombrero de Jesús pero al igual que José, tampoco ve el suyo. Por último, Jesús no ve el color del sombrero de nadie.
divisibilidad y division de polinomios
Encontrar todos los enteros positivos $ n $ distintos de la unidad para los cuales la expresión $(n^3-1)/(n^2+7n-8)$ es un entero.
Ubicación del ortocentro con una sola altura
Sean AB cuerda de una circunferencia y P un punto en AB tal que AP=2PB. Sea DE la cuerda perpendicular a AB que pasa por P. Demostrar que el punto medio Q de AP es el ortocentro del triángulo ADE.
Indios y antropólogos
Una región indígena del país ha sido estudiada por 32 antropólogos, cada uno de los cuales ha estudiado a exactamente 5 indígenas. Por otra parte, cada indígena ha sido estudiado por exactamente 8 antropólogos. ¿Cuántos indígenas hay?
estatal 2008 a
Determinar todas las parejas $(x,y)$ de números enteros que verifican la ecuación:
$$\frac{1}{x}+\frac{2}{y} =\frac{8}{2x+y}$$
El mulo y la burra generalizado (Problema 4, regiones 2008)
Abel le dice a Bárbara: si me dieras n yo tendría dos veces lo que a ti te quede. Bárbara le contesta: si tú me dieras 2 yo tendría n veces lo que a ti te quede. Encontrar todos los valores enteros positivos posibles de n.
ONMAS 2008 Nivel 1, Problema4
Francisco olvidó la clave de su tarjeta de banco y quiere realizar un retiro. Apenas recuerda que su clave contiene 4 dígitos y cumplen lo siguiente
- ninguno de los dígitos es 0 ni es mayor que 5
- no hay dígitos repetidos
- no hay dos dígitos adyacentes que sean números consecutivos
- la clave es un múltiplo de 4
Por ejemplo, el código 5413 no cumple porque el 4 y el 5 son cifras consecutivas, y el código 1135 no cumple porque se repite el 1. Francisco, que tiene muy mala suerte, probó todos los casos posibles y funcionó hasta que probó la última posibilidad. ¿Cuántos casos probó Francisco?
Solución de una cuadrática (Problema 3, regiones 2008)
Sea dado un segmento AB de longitud b. Por B se levanta una perpendicular a AB, y sobre ella se fija un punto O tal que BO=a/2. Se traza a continuación la circunferencia de centro O y radio a/2. La recta AO corta en P y Q a la circunferencia (P más cerca de A que Q). Si llamamos x a la longitud de AP, explicar por qué y cómo esta construcción resuelve la ecuación cuadrática $x^2+ax=b^2$. (Nota: de hecho sólo obtiene la raíz positiva de la ecuación, si es que existe.)
