Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos:
Problema

Lola la trailera

Enviado por jmd el 4 de Julio de 2008 - 14:21.

Un día Lola la trailera midió el tiempo que le tomó atravesar un túnel desde que entró a él hasta que salió por completo. Al otro día, ya de regreso traía un contenedor añadido el cual incrementó la longitud del trailer de 6 a 12 metros. Al cruzar el túnel la segunda vez, Lola redujo la velocidad en un 20% y midió el tiempo de nuevo, resultando que se tardó un 50% más que la primera vez. Encontrar la longitud del túnel en metros.

Problema

alturas de un paralelogramo y areas

Enviado por jmd el 4 de Julio de 2008 - 14:18.

Un paralelogramo ABCD tiene el ángulo en D obtuso. Desde D se bajan perpendiculares a AB y BC, las cuales cortan a estos lados en M y N respectivamente. Si DB=DC=50 y DA=60 encontrar DM+DN.

Problema

Dígitos finales, problema casi ateorico

Enviado por jmd el 4 de Julio de 2008 - 11:03.

Encontrar el entero positivo n más pequeño para el cual los últimos tres dígitos de 2007n (en la notación usual de base 10) son 837.

Problema

Sumar dígitos, problema ateórico

Enviado por jmd el 4 de Julio de 2008 - 09:25.

Un estudiante X forma un número entero escribiendo los números del 1 al 82 de manera ascendente, es decir, 1234567891011…808182. Encontrar la suma de los dígitos de este entero. R: 667

Problema

Los estudiantes con sombrero - Enunciado

Enviado por jesus el 29 de Junio de 2008 - 23:29.

Se han elegido tres estudiantes muy intelegentes para realizar un experimento: José, Valentina y Jesús. Los han acomadado en una fila: al frente, Jesús; atrás de él, Valentina; y al último, José. Les han hecho saber que de un grupo de dos sombreros rojos y tres verdes se elgió uno para cada uno. Como los sombreros fueron puestos al momento de estar formados José puede ver los colores de los sombreros de Valentina y Jesús, pero no el suyo. Valentina puede ver el color del sombrero de Jesús pero al igual que José, tampoco ve el suyo. Por último, Jesús no ve el color del sombrero de nadie.

Problema

divisibilidad y division de polinomios

Enviado por jmd el 29 de Junio de 2008 - 17:07.

Encontrar todos los enteros positivos $ n $ distintos de la unidad para los cuales la expresión $(n^3-1)/(n^2+7n-8)$ es un entero.

Problema

Ubicación del ortocentro con una sola altura

Enviado por jmd el 29 de Junio de 2008 - 16:12.

Sean AB cuerda de una circunferencia y P un punto en AB tal que AP=2PB. Sea DE la cuerda perpendicular a AB que pasa por P. Demostrar que el punto medio Q de AP es el ortocentro del triángulo ADE.

Problema

Indios y antropólogos

Enviado por jmd el 29 de Junio de 2008 - 15:39.

Una región indígena del país ha sido estudiada por 32 antropólogos, cada uno de los cuales ha estudiado a exactamente 5 indígenas. Por otra parte, cada indígena ha sido estudiado por exactamente 8 antropólogos. ¿Cuántos indígenas hay?

Problema

estatal 2008 a

Enviado por jmd el 29 de Junio de 2008 - 15:25.

Determinar todas las parejas $(x,y)$ de números enteros que verifican la ecuación:

$$\frac{1}{x}+\frac{2}{y} =\frac{8}{2x+y}$$

Problema

El mulo y la burra generalizado (Problema 4, regiones 2008)

Enviado por jmd el 9 de Junio de 2008 - 19:08.

Abel le dice a Bárbara: si me dieras n yo tendría dos veces lo que a ti te quede. Bárbara le contesta: si tú me dieras 2 yo tendría n veces lo que a ti te quede. Encontrar todos los valores enteros positivos posibles de n.

Problema

ONMAS 2008 Nivel 1, Problema4

Enviado por jesus el 9 de Junio de 2008 - 18:30.

Francisco olvidó la clave de su tarjeta de banco y quiere realizar un retiro. Apenas recuerda que su clave contiene 4 dígitos y cumplen lo siguiente

  • ninguno de los dígitos es 0 ni es mayor que 5
  • no hay dígitos repetidos
  • no hay dos dígitos adyacentes que sean números consecutivos
  • la clave es un múltiplo de 4

Por ejemplo, el código 5413 no cumple porque el 4 y el 5 son cifras consecutivas, y el código 1135 no cumple porque se repite el 1. Francisco, que tiene muy mala suerte, probó todos los casos posibles y funcionó hasta que probó la última posibilidad. ¿Cuántos casos probó Francisco?

Problema

Solución de una cuadrática (Problema 3, regiones 2008)

Enviado por jmd el 9 de Junio de 2008 - 18:15.

Sea dado un segmento AB de longitud b. Por B se levanta una perpendicular a AB, y sobre ella se fija un punto O tal que BO=a/2. Se traza a continuación la circunferencia de centro O y radio a/2. La recta AO corta en P y Q a la circunferencia (P más cerca de A que Q). Si llamamos x a la longitud de AP, explicar por qué y cómo esta construcción resuelve la ecuación cuadrática $x^2+ax=b^2$. (Nota: de hecho sólo obtiene la raíz positiva de la ecuación, si es que existe.)

Problema

ONMAS 2008 Nivel 1, Problema 3

Enviado por jesus el 9 de Junio de 2008 - 17:59.

Juan tiene que llevar una ficha desde la esquina A hasta la esquina B, moviéndola por las líneas de la cuadrícula del tablero. La ficha puede moverse hacia arriba, hacia abajo, hacia la derecha o hacia la izquierda (la ficha puede pasar varias veces por el mismo punto). Cada vez que la ficha se mueve en sentido horizontal, Juan anota el número de la columna por la que atraviesa. Cuando la ficha finalmente llega a la esquina B, Juan multiplica todos los números que anotó. Encuentra todos los caminos donde el producto de los números anotados por Juan es 8640. Justifica tu respuesta.

Problema

Problema 2, regiones 2008 (La cola del teatro)

Enviado por jmd el 9 de Junio de 2008 - 16:59.

En la cola de la taquilla del teatro están formadas 4 personas con un billete de 50 pesos cada una y 3 con uno de 100 pesos cada una. El boleto cuesta 50 pesos y la caja está vacía al empezar la venta de boletos. (Nota: las personas en la fila sólo se distinguen por el tipo de billete que traen, y cada una trae exactamente un billete.)

  • a) ¿En cuántas ordenaciones diferentes la cola no se detiene por falta de cambio?
  • b) ¿Cuántas ordenaciones diferentes hay –sin importar si detienen o no la cola?
Problema

Problema 1, regional 2008

Enviado por jmd el 9 de Junio de 2008 - 16:26.

La suma de las áreas de dos cuadrados es 400, y el lado de uno mide 3/4 del lado del otro.

a) ¿Cuánto mide el lado de cada uno de los cuadrados?

b) ¿Cuánto medirían si la suma de las áreas fuese 800?

Problema

ONMAS 2008 Nivel 1, Problema 6

Enviado por jesus el 8 de Junio de 2008 - 23:52.

En el triángulo ABC se traza la bisectriz interior CD. Se sabe que el centro del círculo inscrito en el triángulo BCD coincide con el centro del círculo circunscrito del triángulo ABC. Calcular los ángulos del triángulo ABC.

Problema

ONMAS 2008 Nivel 1, Problema5

Enviado por jesus el 8 de Junio de 2008 - 23:51.

Hay que escribir una fila de 20 dígitos de manera que la suma de tres dígitos consecutivos de la fila sea siempre múltiplo de 5. ¿Cuál es la máxima cantidad de dígitos distintos que puede haber en la filal.

Problema

ONMAS 2008 Nivel 1, Problema 1

Enviado por jesus el 8 de Junio de 2008 - 23:48.

Se tiene un cubo con las seis caras de diferente color y deseamos colocar los números del 1 al 6 en las caras del cubo (uno en cada cara). ¿De cuántas formas podemos realizar el acomodo, si deseamos que la suma de los números que están en caras opuestas sea 7?

Problema

ONMAS 2008, Nivel 1, Problema 2

Enviado por jesus el 8 de Junio de 2008 - 23:48.

Sean G una circunferencia de centro O y G’ una circunferencia que pasa por O. Sean A y B los puntos en que G interseca a G’ y escojamos un punto C en G’ distinto de A y B. Tracemos las líneas AC y BC y llamemos D y E a los puntos donde estas líneas cortan a G, respectivamente. Demuestra que AE es paralela a DB.

Problema

Siete enteros

Enviado por jesus el 22 de Marzo de 2008 - 21:57.

En cualquier conjunto de siete enteros siempre hay dos cuya suma o diferencia es múltiplo de 11.