Problemas
También puedes compartirnos alguno de tus problemas favoritos:
Encontrar las soluciones de la igualdad
Encuentre todos los números primos $ p, q $ tales que $ p + q $ = $(p-q)^3$.
Isósceles semejantes sobre un triángulo
Consideremos $A'$, $B'$ y $C'$ tres puntos en el exterior del triángulo $ ABC $, de tal manera que los triángulos $ A'BC $, $ AB'C $ y $ ABC' $ son todos isósceles semejantes y de bases BC, CA y AB respectivamente, Demuestra que $AA'$, $BB'$ y $CC'$ concurren.
Equiláteros en los lados de un triángulo
Este es un problema con la misma figura del triángulo de napoleón.
Consideremos los puntos $A'$, $B'$ y $C'$ puntos fuera del triángulos $ ABC $ de tal manera que los triángulos $ A'BC $, $ AB'C $ y $ ABC' $ son equiláteros. Demuestra que $AA'$, $BB'$ y $CC'$ concurren y son de la misma longitud.
OMM 2008, Problema 6
Las bisectrices internas de los ángulos A, B y C de un triángulo ABC concurren en I y cortan
al circuncírculo de ABC en L, M y N, respectivamente. La circunferencia de diámetro IL,
corta al lado BC, en D y E; la circunferencia de diámetro IM corta al lado CA en F y G;
la circunferencia de diámetro IN corta al lado AB en H y J. Muestra que D, E, F, G, H,
J están sobre una misma circunferencia.
IMO 2008, Problema 1
Un triangulo $ ABC $ tiene ortocentro $ H $. La circunferencia con centro en el punto medio de $ BC $, que pasa por $ H $, corta a la recta $ BC $ en $A_1$y$A_2$, de manera similar se definen los puntos $B_1,B_2$ en la recta $CA$ y $C_1,C_2$ en la recta $AB$. Demuestra que los puntos $A_1, A_2, B_1, B_2, C_1, C_2$ estan en una misma circunferencia.
Una caracterización de los libres de cuadrados
Considera un entero $n > 1$. Demuestra que existen enteros $a,b \geq 1$ tales que $a+b=n$ y $n | ab$ si y sólo si $ n $ no es libre de cuadrados.
Problema básico
Sean $a$ y $b$ dos números enteros positivos tales que $a+b=2009$, probar que 2009 no divide al producto $ab$.
Problema 8 Geometrense
Sean ABC un triángulo y AP, AQ las tangentes desde A a la circunferencia de diámetro BC (P y Q los puntos de tangencia). Muestra que el ortocentro H de ABC está sobre PQ.
Se le quitó la gripa, pero lo porcino... ¿cuándo?
Saliendo del hospital, "Chupy --el muñeco alcoholico--", se detuvo a echarse unos tacos en el carretón de enfrente. Pidió 10 surtidos y una Diet Coke (8 pesos).
Perpendicular si y sólo si el triángulo es isósceles
Sea ABC un triángulo de circuncentro O, sea M el punto medio de AB y E el gravicentro del triángulo AMC. Demostrar que OE y CM son perpendiculares si y sólo si AB=AC
Basico de Algebra
El poder justiciero de los mass media
Al llegar al poder, aquél político y ex-sacerdote, tuvo que reconocer a sus tres hijos ilegítimos ante el inminente escándalo público con que amenazaban sus tres
Implicatura engañosa (y, sin embargo, clásica en concursos...)
En el pizarrón está la lista de los números enteros positivos divisores de 3019. Si borramos los divisores de 2011 ¿cuántos números quedan?
Clases residuales (una instancia de uso)
Al dividir un número entre 5 deja 3 de residuo, y al dividirlo entre 7 deja 2. ¿Cuál es el residuo al dividirlo entre 35?
División de polinomios (una instancia de uso teórica)
Al dividir un polinomio $P(x)$ entre $ x-5 $ el residuo es 2, y al dividirlo entre $ x-2 $ el residuo es 5. ¿Cuál es el residuo al dividirlo entre $ x^2-7x+10 $?
Un reparto equitativo complicado
Sea $p$ un número primo.
Máximos y mínimos (sin derivadas)
Encontrar (si existen) los puntos en que la función $f(x)=ax^2+bx+c$ (con $a$ no nulo --de otra manera la función es lineal) obtiene su máximo y su mínimo.
7 divide a todos
Inferencias a partir de la relación de divisibilidad
Resolver (en números enteros positivos) el siguiente sistema de ecuaciones
$a^3-b^3-c^3=3abc$
$a^2=2(b+c)$
Más allá de los datos: inferencias elementales en un problema básico de números
Encontrar todas las soluciones en enteros positivos de la ecuación $8x+3y+2z=18$.