Problemas
También puedes compartirnos alguno de tus problemas favoritos:
Concurrencia de cuerdas y diagonales de un cuadrilátero circunscrito
Las diagonales de un cuadrilátero circunscrito pasan por el punto de intersección de las cuerdas (que unen los puntos de tangencia en lados opuestos).
Cuerda y diagonal de un cuadrilátero circunscrito
Sea $ ABCD $ un cuadrilátero circunscrito (a una circunferencia, i.e., sus 4 lados son tangentes a la circunferencia), y $ E,F,G,H$ los puntos de tangencia en los lados $ AB, BC, CD, DA, $ respectivamente. Considere la intersección $R$ de una diagonal y una cuerda que une dos puntos opuestos de tangencia, digamos $BD$ y $EG$.
Interrupción de la impudicia --en Cerdeña
Las fotos liberadas en la prensa española develaron el secreto del culto contemporáneo a Vesta. Vesta era la diosa del hogar, y es conocida más por sus sacerdotisas, quienes se encargaban de mantener encendido el fuego sagrado, símbolo de la prosperidad de la antigua Roma.
Trapecio circunscrito
Un trapecio $ABCD$, con $AB$ paralela a $CD$, está circunscrito a una circunferencia (los 4 lados del trapecio son tangentes a la circunferencia) con centro $O.$ Sean $M, N, P, Q$ los puntos de tangencia de la circunferencia con los lados $AB, BC, CD, DA,$ respectivamente. Demuestra que $AQ\cdot QD = BN\cdot NC.$
El 3 de Regiones
Sea $ ABC $ un triángulo rectángulo en $A$. La circunferencia con diámetro $AB$ corta a $ BC $ en $D$, y la circunferencia que pasa por $A, D,$ y el punto medio $O$ de $AB,$ corta a $CA$ en $P$ y corta nuevamente a $ BC $ en $Q$. Demuestra que $PQOA$ es un rectángulo.
Domingo Siete y los tazos de Pokemon
Dominguito Siete se reune cada domingo con sus amigos y lleva tazos de Pokemon. Cuando el número de tazos es múltiplo de 7, los reparte a partes iguales entre sus 6 amigos y él. De otra manera no reparte, sino que compra más tazos (durante la semana): si el número de tazos es impar, compra 7; y si es par, compra 6 veces la cantidad que tiene más otros 5. Si después de 2 domingos de reunirse con sus 6 amigos, se da cuenta que tiene 41 tazos. ¿Cuántos tenía inicialmente?
2k malitos
La PGR detuvo a $2k$ presuntos malitos para interrogarlos: $k$ policías y $k$ funcionarios.
Palabras alienígenas
a) ¿Cuántas palabras de 6 letras se pueden formar con el alfabeto $\{A,E,L,R,T\}$?
b) ¿Cuántas se pueden formar si inician y terminan en consonante $(L,R,T)$?
c) ¿Y si además contienen las dos vocales $A,E$ pero en posiciones no adyacentes?
Palabras en un alfabeto
¿Cuántos números de 5 dígitos tienen todos sus dígitos de la misma paridad y ninguno de sus dígitos es el cero? Nota: se dice que dos números son de la misma paridad si ambos son pares o ambos son impares.
Regiones 2009, problema 1
¿De cuántas formas se pueden colocar los números $0,1,2,3,4,5,6$, uno en cada casilla del siguiente panal, sin que haya 2 múltiplos de 3 en casillas adyacentes (i.e., con un lado en común)?
El fácil del Regiones 2009
¿Cuántos números $abcd$ de 4 dígitos distintos, múltiplos de 36 y menores que 4000 son tales que el producto de $ab$ por $cd$ es múltiplo de 7? Nota: el número 1980 $(a=1, b=9,c=8,d=0)$ es menor que 4000, es múltiplo de 36 y es de dígitos distintos, pero no cumple la condición de que $19\cdot{80}$ sea múltiplo de 7.
Diofantina condicionada
Encontrar todos las parejas de enteros positivos $(x, y)$ que sean solución de la ecuación diofantina $20x+9y=2009$, y que además sean cuadrados perfectos consecutivos. Nota: $(x,y)=(100,1)$ y $(x,y)=(1,221)$ son soluciones de la ecuación diofantina pero no cumplen la condición.
Propiedades del máximo común divisor
Demostrar las siguientes propiedades del máximo común divisor de dos números $a$ y $b.$ Nota: hay dos formas usuales de notación para el máximo común divisor, MCD$(a,b)$ o simplemente $(a,b)$.
Trivial --pero no para el novicio
Demostrar que $n^2-1$ es múltiplo de 8 para cualquier $ n $ impar no negativo.
Diofantina en dos variables
Encontrar todas las parejas $(x,y)$ de enteros que satisfacen la ecuación diofantina $x^3+y^3=4(x^2y+xy^2)+1.$
Lema de Euclides --instancia de uso
Encontrar todas las parejas $(a,b)$ de enteros positivos para los cuales el producto $(a^4+1)(b^2-1)$ es divisible entre 39 pero sus factores $(a^4+1)$ y $(b^2-1)$ no.
P1. OMM 1987. Suma de dos fracciones que dan entero
Consideremos dos fracciones reducidas $\frac{a}{b}$ y $\frac{c}{d}$ con $ b, d>0$ . Si la suma de estas dos fracciones es un número entero entonces $b=d$.
Problema 1, ONMAS 2008
¿Cuántos divisores cuadrados perfectos tiene el número $ 2008^{2008} $ ?
Problema 1, geometrense 2008
En un circunferencia hay $3n$ puntos que la dividen en $3n$ arcos. De estos arcos $ n$ miden 1, $n $ miden 2 y el resto mide 3. Demuestra que existen dos de estos puntos diametralmente opuestos.
Diez cajas de billar y una báscula electrónica.
Tenemos 10 cajas con bolas de billar; cada caja pesa 10kg y contiene 10 bolas de billar (1kg cada una). Pero, una de las cajas salió defectuosa, aunque todas sus bolas pesan lo mismo, la caja completa pesa 9kg. Es decir, en una de las cajas, todas la bolas pesan 900 gramos.
