Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos:
Problema

Problema 5 TZALOA

Enviado por Luis Brandon el 30 de Junio de 2009 - 16:05.

Sean H,O el ortocentro y circuncentro del triangulo ABC con AB distinto de AC. Sea T la circunferencia circunscrita al triangulo ABC. La prolongacion de la mediana AM del triangulo ABC, corta a T en el punto N y la circunferencia de diametro AM corta a T en los puntos A y P. Demuestra que las rectas AP, BC y OH son concurrentes si y solo si AH=NH

Problema

Problema 6(C)

Enviado por jmd el 29 de Junio de 2009 - 21:24.

¿Cuántas ordenaciones (permutaciones) de las letras $A,B,C,D,E,F,G$ no contienen los subórdenes $BGE$ ni $EAF$? Ejemplo: $ABCDEFG$ no contiene ninguno, pero $CBGEAFD$ tiene los dos.

Problema

Problema de Cíclicos (mi primera invención)

Enviado por Luis Brandon el 29 de Junio de 2009 - 19:08.

Sea $ ABC $ un triángulo con incentro $I$ y $AB$  menor que $AC$. Sean $D,E,F$  los puntos de tangencia del incírculo con los lados $BC,CA, AB$, respectivamente. Sean $ H $  la intersección de $BI$ con $EF$, y $G$ la intersección de $CI$ con $EF.$ 

a) Demostrar que $I$ es el incentro del triángulo $DGH.$

b) Demostrar que las rectas $BG$ y $CH$ concurren sobre la perpendicular a $ BC $ que pasa por $D.$

Problema

Problema 8(G)

Enviado por jmd el 28 de Junio de 2009 - 15:07.

En un triángulo $ ABC $, el ángulo $ A $  mide el doble que el $ C $. Se traza la mediana $BD$ al lado $CA$ ($D$ es punto medio de $ CA $). Si el ángulo $ DBC $ es igual al ángulo en $ A $, calcular las medidas de los ángulos del triángulo $ ABC $.

Problema

Blanchet Theorem

Enviado por Luis Brandon el 28 de Junio de 2009 - 11:33.

En un triangulo $ABC $ donde $AD$ es la altura ($D$ sobre $ BC$)sea $P$ cualquier punto sobre $AD$, Y sean $E,F$las intercecciones de $BP,CP$ con $AC,AB$ respectivamente. Entonces se cumple que $AD$ es la bisectriz del angulo $EDF$

Problema

The Eyeball Theorem

Enviado por Luis Brandon el 28 de Junio de 2009 - 11:19.

Sean $C_1$ y $C_2$ dos circunferencias de centros $A,B$, respectivamente. Desde $A$ se trazan las tangentes a $AR,AS$ con $R,S$ los puntos de tangencia, ademas estas rectas cortan a $C_1$ en $C,D$. De la misma forma se trazan las tangentes $BP,BQ$ a $C_1$ con $P,Q$ los puntos de tangencia, estas mismas cortan a $C_2$ en $E,F$, respectivamente. Entonces $EF=CD$

Problema

Problema 3(C)

Enviado por jmd el 27 de Junio de 2009 - 20:21.

Demostrar que en veinte números naturales hay al menos dos cuya diferencia es un múltiplo de 19.

Problema

Problema 7(A)

Enviado por jmd el 27 de Junio de 2009 - 07:50.

Una cuadrilla de jardineros recortó el pasto de dos prados, uno de doble área que el otro. Durante media jornada  toda la cuadrilla trabajó en el prado grande; después de la comida, la mitad trabajó en el prado grande y la otra en el pequeño.

Problema

Problema 4(G)

Enviado por sadhiperez el 26 de Junio de 2009 - 21:47.

Sea ABCD un trapecio con AB parelelo a CD y S la interseccion de sus diagonales. Demostrar: a)ASD y BSC tienen la misma area. b) S es punto medio del segmento paralelo a las bases, que pasa por S y con extremos en los lados del trapecio.

Problema

Problema 2(A)

Enviado por sadhiperez el 26 de Junio de 2009 - 20:22.

Un equipo de pasteleros está compuesto por el viejo panadero y 9 estudiantes. Un cierto día el viejo panadero horneó 9 pasteles más que el promedio de todo el equipo (incluyéndolo a él). Si se sabe que ese día cada estudiante horneó 15 pasteles ¿cuántos pasteles fueron horneados por todo el equipo?

 

Problema

Problema 1(N)

Enviado por sadhiperez el 26 de Junio de 2009 - 19:07.

El numero de la suerte del delegado es de tres y tiene la propiedad de que al restarle 7 el resultado es divisible entre 7, al restarle 8 el resultado es divisible entre 8 y al restarle 9 el resultado es divisible entre 9. ¿Cual es el numero de la suerte del delagado?

 

 

Problema

Suma cuadrática de 3 dígitos

Enviado por arbiter-117 el 24 de Junio de 2009 - 09:48.

¿Cuantas ternas de digitos diferentes $(x,y,z)$ es posible formar, de modo que la suma $x^2+y^2+z^2$ sea multiplo de 5? Nota: las ternas $(0,1,3)$ y $(1,0,3)$ son diferentes.

Problema

Artificio de reducción --por combinaciones lineales

Enviado por jmd el 19 de Junio de 2009 - 11:35.

¿Para qué valores de $ n $ (entero positivo),  los números $n^2+1$ y $(n+1)^2+1$ no son primos relativos?

Problema

(2 por 1): Dos trucos, dos problemas --de divisibilidad

Enviado por jmd el 18 de Junio de 2009 - 17:58.

a) Calcular el Máximo Común Divisor (MCD) de $4a^2+1$ y $2a-1$, donde $a$ es un entero positivo cualquiera.

b) Calcular el residuo de $2009^{2008}$ al dividir entre 9.

Problema

Los tenis del chico fresa

Enviado por jmd el 16 de Junio de 2009 - 17:55.

El chico fresa tenía 10 pares de zapatos tenis dedicados (para ir al Mall los fines de semana). Se entiende que de marca (Adidas Dragon, Converse, Fila, K-Swiss, Mizuno, New Balance, Nike Executor, Puma Fluxion, Reebok, Vans). En la mudanza de su familia se le perdieron 6 zapatos.

Problema

Subconjuntos sin divisores

Enviado por jmd el 15 de Junio de 2009 - 13:46.

Del conjunto $A=\{1,2,\ldots,2n\}$ se eligen elementos y se forma un subconjunto $S$ de $A$. Si resulta que ninguno de los elementos de $S$ tiene múltiplos en $S$ ¿cuál es el máximo número de elementos de $S$?

 

 

Problema

Subconjuntos sin consecutivos

Enviado por jmd el 15 de Junio de 2009 - 07:37.

¿De cuántas formas se puede elegir un subconjunto de tamaño 3 y sin elementos consecutivos del conjunto $\{1,2,\ldots,20\}$?

Problema

Torneo de tenis

Enviado por jmd el 13 de Junio de 2009 - 07:54.

En un torneo de tenis de eliminación simple todos los partidos son eliminatorios y no hay empates (si el número de participantes no es potencia de 2 se organiza una eliminatoria bye). ¿Cuántos partidos se juegan?

Problema

No divisibilidad

Enviado por Fernando Mtz. G. el 12 de Junio de 2009 - 23:20.

Demostrar que no existen $a$ y $b$ >2, enteros positivos, para los cuales: $2^b-1$ divide $2^a+1$

Problema

Maratón

Enviado por jmd el 11 de Junio de 2009 - 18:14.

Ximena y Yadira participan en un maratón: el recorrido es del punto $A$ al $B$ y de regreso de $B$ a $A$. La distancia entre $A$ y $B$ es de $p^2qr$ km, con $p,q,r$ primos en orden creciente.