Problemas
También puedes compartirnos alguno de tus problemas favoritos:
L1.P20 (2009 como suma de impares)
El número 2009 se puede expresar como suma de $ n $ enteros impares consecutivos ($n\geq 2$) en varias formas. ¿Cuál es el menor valor posible de $ n $?
L1.P19 (Doblez)
Un triángulo rectángulo isósceles, con lados iguales de medida 2, ha sido recortado de una hoja de papel que es gris de un lado y cuadriculada del otro.
L1.P18 (Producto de 3 dígitos)
¿Cuántos números $abc$ de tres dígitos son tales que al multiplicar los dígitos se obtiene un producto mayor que 60 pero menor que 65?
L1.P17 (Galletas de chocolate y almendras)
Un lote de galletas contiene galletas con almendras, galletas con chocolate, galletas con los dos ingredientes y otras que no contienen ninguno de los dos. Se encontró que 3/10 tienen almendras, 1/2 tienen chocolate y 3/28 tienen ambos ingredientes. Sin embargo se encontró que 172 galletas no tienen ninguno de los dos ingredientes.
L1.P16 (Piso enmosaicado)
Un piso rectangular está cubierto de mosaicos cuadrados. Tomando como unidad de longitud el lado de un mosaico, el piso tiene dimensiones 45 de largo y 20 de ancho. Si se traza una diagonal de una esquina a la opuesta del piso ¿cuántos mosaicos cruza la diagonal?
L1.P15 (Tangente a un círculo)
Una recta en el plano cartesiano pasa por el punto (3,0) y es tangente al círculo con centro en el origen de coordenadas y radio 1. Encontrar el punto en que la recta corta el eje vertical (de ordenadas).
L1.P14 (Generalización del L1.P13)
Dos circunferencias de radios $R$ y $ r $ son tangentes exteriormente. Encontrar la longitud de su tangente común en términos de los radios.
L1.P13 (Tangente común de dos circunferencias tangentes)
Dos circunferencias de radios 9 y 4 son tangentes exteriormente. Encontrar la longitud de su tangente común.
L1.P12 (Uno del 2009)
Encontrar el residuo en la división de $a+b+c$ entre $b$, donde $a,b,c$ son primos y cumplen la ecuación $2009=a^b(c).$
L1.P11 (Radio del incírculo de un 3,4,5)
Calcular el radio del incírculo de un triángulo cuyos lados miden 3,4,5.
L1.P10 (Equilátero en un lado)
Sobre el lado $AB$ del cuadrado $ABCD$, se traza un triángulo equilátero externo $ABE$. Calcular la medida del ángulo $AED.$
L1.P9 (Dimes y quarters)
Ana fue a McAllen el fin de semana con sus papás. Éstos le regalaron dimes (10 centavos) y quarters (25 centavos). Si los dimes fuesen quarters y los quarters fueran dimes Ana tendría un dollar y 5 centavos (de dollar) menos de lo que ahora tiene.
L1.P8 (Generalización del L1.P7)
Demostrar que si $ k,n$ son enteros positivos sin divisores en común ($k,n$ primos relativos), entonces el máximo entero positivo que no se puede expresar como suma de múltiplos de $k$ y $n$ es $kn-k-n.$
L1.P7 (No expresable como n=4x+5y)
Encontrar el máximo entero positivo $ n $ que no se puede expresar en la forma $n=4x+5y$, con $x,y$ enteros positivos.
L1.P6 (Problema cuadrático)
Si $p^2+1/p^2=7$, con $p$ entero positivo, encontrar el valor de $p+1/p.$
L1.P5 (Encontrar ángulo con isósceles)
En un triángulo $ ABC $ los lados $ AC $ y $ BC $ son iguales. Un punto $D$ en el lado $ BC $ es tal que los triángulos $ABD$ y $ACD$ son isósceles. Si $AD=AB$ ¿cuánto mide el ángulo en $B$?
L1.P4 (Fracciones a/b menores que 1)
Si $a, b$ son dígitos (elementos del conjunto $\{1,2,3,4,5,6,7,8,9\}$), encontrar el número de fracciones $a/b$ menores que 1.
L1.P3 (Menor entero que no divide a 69!)
Para un entero positivo $ n $, el factorial de $ n $ (denotado con $n!$) es $n!=(n)(n-1)(n-2)...(3)(2)(1)$. Encontrar el menor entero positivo (distinto de 1) que no divide a 69!
L1.P2 (Lado de un cuadrado)
En un círculo de centro $O$ y radio $5k$, se traza un cuadrado. Uno de sus lados es cuerda de la circunferencia y el lado opuesto a la cuerda pasa por el centro $O$. Calcular la longitud del lado del cuadrado en términos de $k$.
Lista1.Problema1 (Residuo de 155/n)
El residuo que deja 80 al dividir entre un número entero positivo $ n $ es 4 ¿Cuál es residuo que deja 155 al dividirlo entre $ n $?
