Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos:
Problema

El lugar geométrico de la reflexión de un punto

Enviado por jesus el 17 de Julio de 2009 - 10:59.

Sean $ P$ un punto en el interior de una circunferencia $\mathcal{C}$ y $ M$ un punto sobre $\mathcal{C}$. Definamos $ N$ el punto sobre $\mathcal{C}$ tal que el ángulo $\measuredangle MPN = 90^{\circ}$ (en sentido contrario de las manecillas del reloj). Llamemos $P'$ el punto que resulta de reflejar $ P$ con respecto a $MN$.

Problema

Construcción de una circunferencia ortogonal

Enviado por jmd el 17 de Julio de 2009 - 10:16.

Sea dada una circunferencia $c$. Demostrar que el siguiente procedimiento produce una circunferencia ortogonal a $c$ con centro en un punto $P$ fuera de $c$.
1) Trazamos las tangentes a $c$ desde $P$ ubicando los puntos de tangencia $T$ y $T'$.
2) Trazamos la circunferencia con centro en $P$ y radio $PT$. Esta es la circunferencia ortogonal pedida.

Problema

Caracterización del eje radical

Enviado por jmd el 16 de Julio de 2009 - 21:20.

Demostrar que el eje radical de dos circunferencias es el lugar geométrico de los puntos que cumplen la propiedad de que el producto de la suma por la diferencia de sus distancias a los centros es una constante.

Problema

Valor de la potencia de un punto

Enviado por jmd el 16 de Julio de 2009 - 18:41.

Demostrar que la potencia de un punto $P$ respecto a la circunferencia $c$ con centro en $O$ y radio $ r $ es $PO^2-r^2$

 

Problema

Construcción del inverso

Enviado por jmd el 16 de Julio de 2009 - 10:37.

Sea dada una circunferencia c de centro O y radio r, y un punto P fuera del círculo. Demostrar que el siguiente procedimiento produce el inverso P' de P con respecto a la circunferencia c.

1) Trazar la recta OP.
2) Trazar una de las tangentes desde P a c, y llamar T al punto de tangencia.

Problema

Trazar una tangente a una circunferencia

Enviado por jmd el 16 de Julio de 2009 - 10:35.

Sea dada una circunferencia c de centro O y radio r, y un punto P fuera del círculo. Demostrar que el siguiente procedimiento produce el punto de tangencia T de la tangente que pasa por P.

1) Trazar el segmento OP.
2) Trazar la circunferencia de diámetro OP y llamar T a uno de los puntos de intersección con c.

Problema

Altura de un triángulo rectángulo

Enviado por jmd el 16 de Julio de 2009 - 10:30.

Sea AP la altura de A respecto a la hipotenusa BC del triángulo rectángulo ABC. Demostrar que se cumplen las proporciones PB/BA=BA/BC y  BP/PA=PA/PC.

Problema

Cuerda común y línea de centros

Enviado por jmd el 15 de Julio de 2009 - 21:33.

La línea de centros (recta que pasa por los centros) de dos círculos que se intersectan es mediatriz de su cuerda común.

Problema

Cuerda y tangentes comunes

Enviado por jmd el 15 de Julio de 2009 - 21:28.

La cuerda común de dos círculos pasa por el punto medio de la tangente común a los círculos. Demostrarlo.

Problema

Círculos en dos lados de un triángulo

Enviado por jmd el 15 de Julio de 2009 - 18:48.

Tomando como diámetros los lados AB y AC del triángulo ABC, se trazan sendos círculos. Demostrar que su otro punto de intersección (aparte de A) está sobre el lado BC.

Problema

Lema de las alturas (para cíclicos)

Enviado por jmd el 14 de Julio de 2009 - 20:30.

Cualesquiera dos vértices de un triángulo son concíclicos con los pies de sus alturas.

Problema

Problema 5 IMO 2005

Enviado por Luis Brandon el 14 de Julio de 2009 - 17:03.

Sea $ ABCD$ un cuadrilatero convexo con $ BC=DA $ y además las rectas $ BC,DA $ no son paralelas. Consideremos dos puntos variables $ E,F $ sobre $ BC, DA $ respectivamente, que satisfacen $ BE=DF$ . Sea $P$ la interseccion de $ AC, BD.$  Las rectas $BD$ y $EF$ se intersectan en $Q$ y las rectas $AC$ y $EF$ se intersectan en $R$.

Problema

Uno de Ciclicos (tema del 1er entrenamiento 09)

Enviado por sadhiperez el 13 de Julio de 2009 - 22:47.

 

Sea AB diametro de una semicircunferencia. Un punto M sobre la semicircunferencia y K un punto spbre AB. Una circunferencia con centro P pasa por A,M,K, y otra circunferencia de centro Q pasa por M,K,B. Demostrar que MPKQ es un cuadrilatero ciclico. 

Problema

PROBLEM 1 DE LA CENTRO

Enviado por arbiter-117 el 6 de Julio de 2009 - 22:25.

Determine el menor entero positivo $ N $  tal que la suma de sus dígitos sea 100 y la suma de $2N$ sea 110

Problema

Probar simediana

Enviado por Luis Brandon el 6 de Julio de 2009 - 18:36.

Considera un triangulo $ ABC $ Con $ BD $ su bisectriz interna ( $D$ sobre $AC$) Sea $E$ el punto donde se intersectan $BD$ y el circuncirculo del triangulo $ ABC $. El circulo de diametro $DE$ corta al circuncirculo del triangulo $ ABC $ en los puntos $D,F$ demuestra que $BF$ es la simediana del triangulo $ ABC $

Problema

Problema 2 BMO 2009

Enviado por Luis Brandon el 5 de Julio de 2009 - 16:39.

Sea $MN$ una línea paralela al lado $ BC $ del triángulo $ ABC $, con $ M $ sobre el lado $AB$ y $ N $ sobre el lado $AC$. Las íineas $BN$ y $CM$ se intersectan en un punto $P$. Los circuncírculos de los triángulos $BPM$ y $CPN$ se intersectan en $P$ y $Q$. Demostrar que $\angle{BAQ}=\angle{CAP}$

Problema

Otro de un cuadrado, dentro de otro cuadrado.

Enviado por Fernando Mtz. G. el 5 de Julio de 2009 - 02:29.

Sea ABCD un cuadrado de centro O. Sean P, Q, R y S puntos en DA, AB, BC y CD, repectivamente,  tales que P,O y R son colineales; y Q, O y S también lo son (colineales), y de manera que  PR es perpendicular a QS. Demostrar que el cuadrilátero PQRS es un cuadrado.   

Problema

L1.P23 (Un clásico --para terminar la lista)

Enviado por jmd el 2 de Julio de 2009 - 11:45.

Encontrar todas las soluciones en enteros positivos de la ecuación $1/x+1/y+1/z=1.$

Problema

L1.P22 (Una ecuación cuadrática)

Enviado por jmd el 2 de Julio de 2009 - 11:34.

La ecuación $x^2+bx+2=0$ tiene solamente una raíz. Determinar los valores de $b$.

Problema

L1.P21 (Cuadrado en el centro de un cuadrado)

Enviado por jmd el 2 de Julio de 2009 - 11:21.

Los puntos medios $L,M,N,O$ de los lados $QR,RS,SP,PQ$ de un cuadrado $PQRS$ se unen con con un segmento de recta a los vértices de éste de manera que se forme un cuadrado $P'Q'R'S'.$ Calcular la razón de áreas de los dos cuadrados.