Problemas
También puedes compartirnos alguno de tus problemas favoritos:
Raíces cúbicas de números racionales
Sean $p,q,r$ números racionales no nulos tales que
$$\sqrt[3]{pq^2}+\sqrt[3]{qr^2}+\sqrt[3]{rp^2}$$
es un número racional no nulo. Demostrar que
$$\frac{1}{\sqrt[3]{pq^2}}+\frac{1}{\sqrt[3]{qr^2}}+\frac{1}{\sqrt[3]{rp^2}}$$ es también un número racional.
Embaldosado de un patio
Se desea embaldosar un patio cuadrado de lado $N$ entero positivo. Se dispone de dos tipos de baldosas: cuadradas de $5\times5$, y rectangulares de $1\times3$. Determine los valores de $N$ para los cuales es posible hacerlo. Nota: el patio debe quedar completamente cubierto sin que las baldosas se sobrepongan.
Mover una ficha en un tablero
Un jugador coloca una ficha en una casilla de un tablero $m\timesn$ dividido en cuadrados de tamaño $1\times1$. El jugador mueve la ficha de acuerdo a las siguientes reglas:
- En cada movida, el jugador mueve la ficha a un cuadrado que comparte un lado con el cuadrado en que se encuentra.
- El jugador no puede mover la ficha a un cuadrado que ha ocupado previamente.
- Dos movimientos consecutivos no pueden tener la misma dirección.
El juego termina cuando el jugador no puede mover la ficha. Determine todos los valores de $m$ y $ n $ tales que, al colocar la ficha en algún cuadrado, todos los cuadrados pueden ser ocupados durante el juego.
Tangente al circuncírculo
En el triángulo $ABC$, $L,M,N$ son los puntos medios de los lados $BC,CA,AB$, respectivamente. La tangente por $A$ al circuncírculo de $ABC$, corta en $P$ y $Q$ a las rectas $LM$ y $LN$, respectivamente. Demostrar que $CP$ es paralela a $BQ$.
Suma de dígitos
Si $S(n)$ denota la suma de los dígitos de un número natural n, encontrar todas las soluciones de $n(S(n)-1)=2010$ y demostrar que son las únicas.
Posible cambio de variables en desigualdades (2)
Sean $x,y,z$ números reales positivos. Demostrar que si $xy+yz+zx+2xyz=1$, entonces existen números $a,b,c$ reales positivos tales que
$$x=\frac{a}{b+c},y=\frac{b}{c+a},z=\frac{c}{a+b}$$
Posible cambio de variables en desigualdades
Sean $x,y,z$ números reales positivos y $\sigma_1=x+y+z$, $\sigma_2=xy+yz+zx$, $\sigma_3=xyz$. Demostrar que si $\sigma_3=\sigma_1+2$, entonces existen números $a,b,c$ reales positivos tales que $$x=\frac{b+c}{a},y=\frac{c+a}{b},z=\frac{a+b}{c}$$
Un ejercicio algebraico con polinomios simétricos
Sean $x,y,z$ números reales positivos y $\sigma_1=x+y+z$, $\sigma_2=xy+yz+zx$, $\sigma_3=xyz$, los polinomios simétricos elementales para tres variables. Demostrar que $1/(1+x)+1/(1+y)+1/(1+z)=1$ si y sólo si $\sigma_3=\sigma_1+2$. (En otras palabras, las ecuaciones $1/(1+x)+1/(1+y)+1/(1+z)=1$ y $xyz=x+y+z+2$ pueden ser transformadas una en la otra mediante operaciones algebraicas.)
Un producto de Cauchy
Sea dada una sucesión finita $a_0,a_1,a_2,\ldots,a_n$ de números reales positivos. Demostrar que la sucesión es geométrica si y sólo si se cumple la ecuación
$$(a_0^2+a_1^2+\ldots+a_{n-1}^2)(a_1^2+a_2^2+\ldots+a_n^2)=(a_0a_1+a_1a_2+\ldots+a_{n-1}a_n)^2$$
Trapecio isósceles
Sea dado un trapecio isósceles ABCD. Demostrar:
Si la altura y la línea media (unión de los puntos medios de sus lados) son congruentes entonces sus diagonales son perpendiculares.
Decir también si la recíproca se cumple (con prueba o contraejemplo).
Distancia a la otra tangente común
Considere dos circunferencias de radios $r$ y $R$, y centros $B$ y $C$, respectivamente. Demostrar que si $A$ es un punto sobre una tangente externa común a las dos circunferencias, y es equidistante a los centros de éstas, entonces la distancia de $A$ a la otra tangente externa común es $r+R$.
Dos desigualdades y una ecuación
a) Demostrar que para todas las parejas $a,b$ de números reales se cumplen las desigualdades:
$$(a^2+1)(b^2+1)\geq(ab+1)^2$$
$$(a^2+1)(b^2+1)\geq(a+b)^2$$
b) Decir, con prueba, para qué valores se cumple la igualdad en cada una de las desigualdades anteriores.
c) Encontrar todas las soluciones $(x,y)$ en números reales, de la ecuación $(x^2+1)(y^2+1)=(xy+1)(x+y)$
No podrían saludar sólo a uno
Cada uno de los 61 competidores en el concurso estatal saludó de mano al menos a otro competidor. Demostrar que alguno de ellos saludó de mano al menos a dos competidores.
Múltiplo de 1001
Demostrar que el número 100...001, el cual tiene doscientos ceros intermedios, es múltiplo de 1001.
¿Cómo se demostraba Ceva con áreas?
Sean $L,M,N$ puntos sobre los lados $BC,CA,AB$ del triángulo $ABC$, y las cevianas $AL,BM,CN$ concurrentes en el punto P. Calcular el valor numérico de las sumas de razones siguientes:
$$\frac{PL}{AL}+\frac{PM}{BM}+\frac{PN}{CN}$$
$$\frac{AP}{AL}+\frac{BP}{BM}+\frac{CP}{CN}$$
Diofantina de primos
Encontrar todos los primos $p,q$ que cumplen la ecuación $p+q^2=q+145p^2$
Triángulo y circunferencia circunscrita
Dado el triángulo $ABC$, se consideran los puntos $D$, $E$, y $F$ sobre los segmentos $BC$, $AC$, y $AB$, respectivamente. Demostrar que si los segmentos $AD$, $BE$, y $CF$ pasan por el centro de la circunferencia circunscrita al triángulo, de radio $R$, entonces
$\displaystyle \frac{1}{AD} + \frac{1}{BE} + \frac{1}{CF} = \frac{2}{R}$.
Operan al primo... ¿resultó cuadrado? ¡perfecto!
Encontrar todos los primos $p$ tales que $5^p+4p^4$ es cuadrado perfecto.
Desigualdad separable
Sean $x,y$ números reales no negativos. Demostrar que se cumple la desigualdad
$$(x+y^3)(x^3+y)\geq{4x^2y^2}$$
¿En qué casos se logra la igualdad?
Un punto dentro de un equilátero
Un punto $P$ en el interior de un triángulo equilátero $ABC$ es tal que $PC=3, PA=4, PB=5$. Calcular el perímetro del triángulo $ABC$.
