Problemas
También puedes compartirnos alguno de tus problemas favoritos:
Residuo de una suma
El número $10^{10}+10^{10^2}+\ldots+10^{10^{10}}$ se divide entre 7. ¿Cuál es el residuo?
Una propiedad de la rotación de triángulos
Demostrar que si el lado AB del triángulo ABC es girado un ángulo $\alpha$
respecto al vértice C, y como resultado se obtiene el triángulo A'B'C, entonces las rectas AB y A'B' se intersectan en un ángulo $\alpha$. (Equivalentemente, si P es el punto de intersección, entonces el cuadrilátero PACA' es cíclico.)
El 3 de la ONMAS 2010
Sea $ABC$ un triángulo rectángulo con ángulo recto en $B$. Sean $D$ el pie de la altura desde $B$, $E$ el punto medio de $CD$ y $F$ un punto sobre la recta por $A$ y $B$ de manera que $BA=AF$. Muestra que las rectas $BE$ y $FD$ son perpendiculares.
Semejanza y giro
Sea $ABC$ un triángulo acutángulo e isósceles, con $AC=AB$. Sean $O$ su circuncentro e $I$ su incentro. Si $D$ es el punto de intersección de $AC$ con la perpendicular a $CI$ que pasa por $O$, demuestra que $ID$ y $AB$ son paralelas. (Tzaloa, 2010,1, p.36)
Problema cuadrático
Sean $x,y$ enteros para los cuales existen enteros consecutivos $c$ y $d$ tales que $x-y=x^2c-y^2d$. Demostrar que $x-y$ es cuadrado perfecto.
¿Cuadrado perfecto? ¡Manipulación algebraica!
Sean $x,y$ enteros positivos tales que $3x^2+x=4y^2+y$. Demostrar que $x-y$ es cuadrado perfecto.
Problema 2
Sea S el conjunto de puntos (i,j) de coordenadas enteras en el plano, con i,j=0,1,2,...,9.
Problema 1
El pentágono ABCDE es tal que AB=BC y CD=DE, y sus ángulos en A,C, y E son rectos. Encontrar la medida del ángulo ECA.
Coloración de vertices
Demuestra que una gráfica $G$ es bipartita si y sólo si su número cromático $\chi(G)$ es 2.
Encuentra el ángulo
El triángulo ABC es rectángulo en C, y las bisectrices de sus ángulos en A y B cortan los lados BC y CA en P y Q respectivamente. Los puntos M y N sobre el lado AB son los pies de las perpendiculares bajadas desde P y Q, respectivamente. ¿Cuánto vale el ángulo MCN?
Divisores de 6n
Sea $ n $ un entero positivo. Si $2n$ tiene 30 divisores positivos y $3n$ tiene 32 ¿Cuántos divisores tiene $6n$?
Cuadrados en el primer cuadrante
Sea $S$ el conjunto de puntos $(i,j)$ de coordenadas enteras en el plano, con $i,j=0,1,2,\ldots,n$.
- a) ¿De cuántas formas se pueden elegir cuatro puntos de $S$ de manera que formen un cuadrado con lados paralelos a los ejes de coordenadas?
- b) ¿De cuántas formas se pueden elegir cuatro puntos en $S$ de manera que formen un cuadrado?
Ptolomeo invisible
Se tiene inscrito en una circunferencia un 3n-agono regular, donde sus vertices son $A_{1},A_{2},...,A_{3n}$ Si se coloca un punto $P$ de manera arbitraria sobre sobre la circunferencia, y desde $P$ se trazan todas las rectas posible hacia todos los puntos $A_{i}$. Demostrar que: la suma de las n rectas trazadas mas grande, es igual a la suma de las 2n rectas mas pequeñas.
Arma Mortal
Mel Gibson es 4 años mayor que su ex-esposa Robyn. Hace 6 años la edad de Mel era el doble que su vida de casado con Robyn. Si no se hubieran divorciado el año pasado, este año ella habría cumplido 3/5 de su edad casada con Mel. ¿Cuántos años tienen?
Máximo con restricciones
Los números reales $a,b,c,d,e$ suman 8 , sus cuadrados 16. Encontrar el máximo valor que puede obtener $e$.
Razonar la representación decimal de un número
Un número de 4 dígitos es 9 veces el número que resulta de quitarle el primer dígito. Encontrar todos los valores posibles de ese primer dígito.
Suma de consecutivos
La suma de 18 enteros consecutivos positivos es un cuadrado perfecto. Encontrar el mínimo valor que puede tener esa suma.
¿Qué es lo que no se puede hacer con los primos?
Encontrar todos los valores enteros positivos $ n $ para los cuales $f(n)=n^2-3n+2$ es un número primo. Justifica tu respuesta.
Gráfica de una ecuación
Discutir la ecuación $xy=4y$ y, en particular, determina su gráfica.
Decisión económica en la Nomás no Abandones
El director de la preparatoria Nomás no Abandones recibió un cierto monto de dinero para repartir 36 becas entre los alumnos de más alto desempeño. Usó su buen juicio y llegó a la conclusión de que el proceso de decidir quiénes eran los mejores era complicado y que de cualquier manera no faltarían las protestas. De ahí que la decisión económica fue repartir ese dinero entre 36 de sus favoritos. Pero, como todo mundo sabe o debería saber, hay siempre algunos que son más favoritos que otros (llamémosles predilectos). Así que a los predilectos les entregó 700 pesos más que a los simples favoritos.
