Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos:
Problema

Isósceles en 2 circunferencias de mismo radio

Enviado por Samuel Elias el 24 de Octubre de 2022 - 08:51.

Sean α y β dos circunferencias con el mismo radio. Dichas circunferencias se intersectan en puntos P y Q. Sea X un punto en α. La recta QX intersecta a β en un punto Z, de manera que Z queda entre X y Q. Demuestra que PX=PZ.

Problema

Paralelogramo con solo 3 vértices en una circunferencia

Enviado por Samuel Elias el 24 de Octubre de 2022 - 08:42.

Sea ABCD un paralelogramo. Sean K y L las intersecciones del circuncírculo de ABC con los lados AD y CD respectivamente. Sea M el punto medio del arco KL que no contiene a B. Demuestra que DM es perpendicular a AC.

Problema

Múltiplos de 9 con restricciones

Enviado por Samuel Elias el 24 de Octubre de 2022 - 08:37.

¿Cuántos múltiplos de 9 menores que 1000 no usan ningún digito menor que 3?

Problema

Promedio de un colección de m números

Enviado por Samuel Elias el 23 de Octubre de 2022 - 18:53.

a) Demuestra que si a una colección de m números le agregamos su promedio, la nueva colección de m+1 números tendrá el mismo promedio.
b) Demuestra que el promedio de una colección de m números es menor o igual a su número más grande, y mayor o igual a su número más pequeño. 

Problema

El 6 del estatal 2022

Enviado por Samuel Elias el 23 de Octubre de 2022 - 18:24.

En una circunferencia Γ con centro en D se trazan dos tangentes AE y AF con E y F sobre Γ. Sean B y C puntos sobre los segmentos AE y AF respectivamente de tal manera que BC también es tangente a Γ. Sea J la intersección de BD con EF. Demuestra que el ángulo CJB es un ángulo recto. 

Problema

Problema 5 Estatal 2022

Enviado por Samuel Elias el 23 de Octubre de 2022 - 18:21.

Encuentra todas las parejas de enteros positivos (x,n) tales que:

(3)(2x) + 4 = n2

Problema

Matrimonios en una mesa

Enviado por Samuel Elias el 23 de Octubre de 2022 - 18:18.

A una cena llegan 3 matrimonios. Se quieren sentar alrededor de una mesa redonda de manera que nadie quede junto a su pareja. ¿De cuántas formas se pueden acomodar si Ana ya tiene un lugar asignado fijo?

Problema

El 3 del estatal 2022

Enviado por Samuel Elias el 23 de Octubre de 2022 - 18:15.

Encuentra todos los valores para de tal forma que la expresión 

6n+1

sea un número con todos sus dígitos iguales.
 

Problema

Juego con una bolsa de 2022 piedras

Enviado por Samuel Elias el 23 de Octubre de 2022 - 18:11.

Julieta y Edwin juegan al siguiente juego. Se empieza con una bolsa que contiene 2022 piedras. Se juega por turnos alternados y cada jugador puede hacer lo siguiente:

  • Si el número de piedras en la bolsa es par, el jugador puede tomar una piedra o la mitad de las piedras.
  • Si el número de la bolsa es impar, tiene que tomar una sola piedra.

Gana quien tome la última piedra. Julieta empieza el juego. 

Determina quién tiene una estrategia ganadora y explícala.

Problema

Mesa hexagonal con mantel rectangular

Enviado por Samuel Elias el 23 de Octubre de 2022 - 18:06.

Carlos tiene una mesa en forma de hexágono regular y un mantel rectangular con área 2022 que cubre un rectángulo de la mesa formado por exactamente dos lados paralelos de la mesa como bases del rectángulo. ¿Cuál es el área de la mesa?

Problema

El difícil de la segunda ronda (el 4)

Enviado por Samuel Elias el 23 de Octubre de 2022 - 18:02.

Tenemos 16 mosaicos que tienen dos cuartos de circunferencia centradas en esquinas opuestas cuyo radio es la mitad del lado de la baldosa como se muestra:

Problema

Pon a prueba tu vista

Enviado por Samuel Elias el 23 de Octubre de 2022 - 17:55.

En el trapecio ABCD de bases AB y CD, las diagonales AC y BD son perpendiculares entre sí. Los Segmentos AB y BD miden 20 m y 17 m respectivamente. El área del triángulo ABD es 102 m2. ¿Cuántos metros mide el lado CD?

Problema

El número de Belmaris

Enviado por Samuel Elias el 23 de Octubre de 2022 - 17:50.

André, Belmaris, Claudia, Daniel, Elmer y Germán van a jugar a decir números en ese orden. André y Belmaris podrán elegir sus números, pero los siguientes deben decir el resultado de la multiplicación de los números que dijeron las dos personas antes que ellos, sin equivocarse. Si André dijo "2" y Germán dijo "6 075 000" (seis millones setenta y cinco mil), ¿qué numero dijo Belmaris?

Problema

Las prendas de Mauricio

Enviado por Samuel Elias el 23 de Octubre de 2022 - 17:45.

Mauricio se está probando ropa en una tienda. Está indeciso entre 4 camisas, 7 suéteres, 3 sudaderas y 3 pantalones, todos estos artículos distintos. Comprará exactamente 3 artículos, todos de diferentes tipos (es decir, no dos camisas y un suéter o tres pantalones, etc.). ¿De cuántas formas Mauricio podrá hacer sus compras?

Problema

Problema 4. 21a OMM Final Estatal

Enviado por vmp el 2 de Agosto de 2022 - 16:02.

Dos personas A y B van a jugar un juego alternando turnos; A toma el primer turno. Para el juego está dibujada sobre un papel una cuadrícula de 7 × 7. En cada turno se borran algunos de los cuadritos como sigue: El jugador en turno escoge un cuadrito y borra toda la columna y el renglón a los que pertenece ese cuadrito dentro de la porción rectangular donde está en ese momento el cuadrito. Por ejemplo, si al principio A escoge
el cuadrito marcado con 1 en la figura (a) de abajo, a B le queda la figura (b) y, si él escoge el cuadrito marcado con 2, entonces para el siguiente turno a A le queda la figura (c).

Problema

Problema 3. 21a OMM Final Estatal

Enviado por vmp el 26 de Julio de 2022 - 15:24.

En la figura, $ABC$ es un triángulo isósceles con $|AB| = |AC|$; $D$ es un punto sobre $AC$ tal que $DB$ es perpendicular a $BC$; $E$ es un punto sobre la recta $BC$ tal que $|CE| = 2|BC|$ y $F$ es un punto sobre $ED$ tal que $FC$ es paralela a $AB$. Probar que la recta $FA$ es paralela a $BC$.

Problema

Práctica de módulos

Enviado por vmp el 25 de Julio de 2022 - 09:40.
Prueba que no existe entero $n$ tal que la suma de los dígitos de $n^2$ es $2022$
Problema

Problema 4 - IMO 2022 - Un cíclico a partir de un pentágono

Enviado por jesus el 20 de Julio de 2022 - 11:19.
Sea $ABCDE$ un pentágono convexo tal que $BC = DE$. Supongamos que existe un punto $T$ en el interior de $ABCDE$ tal que $TB = TD$, $TC = TE$ y $\angle ABT = \angle TEA$. La recta $AB$ corta a las rectas $CD$ y $CT$ en los puntos $P$ y $Q$, respectivamente. Supongamos que los puntos $P$ , $B$, $A$, $Q$ aparecen sobre su recta en ese orden. La recta $AE$ corta a las rectas $CD$ y $DT$ en los puntos $R$ y $S$, respectivamente. Supongamos que los puntos $R$, $E$, $A$, $S$ aparecen sobre su recta en ese orden. Demostrar que los puntos P , S, Q, R están en una misma circunferencia
Problema

Problema 5 - IMO 2022 - Redacción corta pero peligrosa

Enviado por Samuel Elias el 14 de Julio de 2022 - 20:38.

Hallar todas las ternas (a,b,p) de números enteros positivos con p primo que satisfacen

ap = b! + p

Problema

Típica probabilidad de dados y monedas

Enviado por Samuel Elias el 11 de Julio de 2022 - 16:36.

Se va a lanzar al mismo tiempo un dado con los números del 1 al 6 y una moneda con los números 1 y 2. ¿Cuál es la probabilidad que la multiplicación de los números que caigan en la moneda y el dado sea un número impar?