Problemas
También puedes compartirnos alguno de tus problemas favoritos:
4.- El término 2023
Sean $x_1$, $x_2$, ..., $x_{2023}$ números reales positivos, todos distintos entre sí, tales que
$a_n$ = $\sqrt{(x_1 + x_2 + ... + x_n)(\frac{1}{x_1} + \frac{1}{x_2} + ... + \frac{1}{x_n})}$
es entero para todo $n$ = 1, 2, ..., 2023. Demuestra que $a_{2023} \geq 3034$.
3.- Un polinomio, una sucesión infinita
Para cada entero $k \geq 2$, determina todas las sucesiones infinitas de enteros positivos $a_1, a_2, \dots$ para los cuales existe un polinomio $P$ de la forma $P(x) = x^k + c_{k-1}x^{k-1} + ... + c_1x + c_0$, con $c_0, c_1, \dots , c_{k-1}$ enteros no negativos, tal que
$P(a_n) = a_{n+1}a_{n+2} \cdots a_{n+k}$
para todo $n \geq 1$
2.- Revive la geo con una concurrencia
Sea $ABC$ un triángulo acutángulo con $AB < AC$. Sea Ω el circuncírculo de ABC. Sea S el punto medio del arco $CB$ de Ω que contiene a A. La perpendicular por $A$ por $BC$ corta al segmento $BS$ en $D$ y a Ω de nuevo en E ≠ A. La paralela a $BC$ por $D$ corta a la recta $BE$ en $L$. Sea ω el circuncírculo del triángulo $BDL$. Las circunferencias ω y Ω se cortan de nuevo en P ≠ B. Demuestra que la recta tangente a ω en P corta a la recta BS en un punto de la bisectriz interior del ángulo <$BAC$.
1.- No le tengas miedo a la IMO
Determina todos los enteros compuestos $n >1$ que satisfacen la siguiente propiedad:
Si $d_1, d_2, \dots, d_k$ son todos los divisores positivos de $n$ con $1 = d_1 < d_2< \cdots< d_k = n$, entonces $d_i$ divide a $d_{i+1} + d_{i+2}$ para cada $1 \leq i \leq k-2$.
P8. Hexágonos de palitos con áreas iguales
Se tienen nueve palitos de madera: tres azules de longitud $a$ cada uno, tres rojos de longitud $r$ cada uno y tres verdes de longitud $v$ cada uno, tales que es posible formar un triángulo $T$ con palitos de colores distintos.
Dana puede formar dos arreglos, comenzando con $T$ y utilizando los otros seis palitos para prolongar los lados de $T$, como se muestra en la figura. De esta manera se pueden formar dos hexágonos cuyos vértices son los extremos de dichos seis palitos. Demuestra que ambos hexágonos tienen la misma área.
P7. El orden de $x$, $y$ y $z$ es independiente de $a$ y $b$.
Supongamos que $a$ y $b$ son dos números reales tales que $0 < a < b <1$. Sean :
\[x = \frac{1}{\sqrt{b}} - \frac{1}{\sqrt{a+b}}, \quad y = \frac{1}{b-a} - \frac{1}{b} \quad \textrm{y} \quad z =\frac{1}{\sqrt{b-a}} - \frac{1}{\sqrt{b}} \]Muestra que $x$, $y$ y $z$ quedan siempre ordenados de menor a mayor de la misma manera, independientemente de la elección de $a$ y $b$. Encuentra dicho orden entre $x$, $y$ y $z$.
P6. Borrando números del pizarrón
Alka encuentra escrito en un pizarrón un número $n$ que termina en 5. Realiza una secuencia de operaciones con el número en el pizarrón. En cada paso decide realizar una de las dos operaciones siguientes:
- Borrar el número escrito $m$ y escribir su cubo $m^3$.
- Borrar el número escrito $m$ y escribir el producto $2023\cdot m$
Alka realiza cada una de las operaciones un número par de veces en algún orden y al menos una vez, y obtiene finalmente el número $r$. Si las cifras de las decenas de $r$ es un número impar, encuentra todos los valores posibles que la cifra de las decenas de $n^3$ pudo haber tenido.
P5. Palitos y perímetro
Mía tiene dos palitos verdes de 3cm cada uno, dos palitos azules de 4cm cada uno y dos palitos rojos de 5cm cada uno. Mía quiere formar un triángulo utilizando los seis palitos como su perímetro; todos a la vez y sin encimarlos, ni doblarlos o romperlos. ¿Cuántos triángulos no croncruentes puede formar?
Nota: Dos triángulos son congruentes si sus lados correspondientes tienen las mismas medidas. No importa el orden en que los palitos se usen para formar los lados, sólo la medida de los lados formados.
P4. Encuentra todas las asignaciones f(m,n)
P3. Un país llamado Máxico
Un país llamado Máxico tiene dos islas, la isla Mayor y la isla Menor. La isla Mayor está compuesta por $k>3$ estados con exactamente $n>3$ ciudades cada uno, de manera que tiene $kn$ ciudades en total. La isla Menor tiene sólo un estado que tiene 31 ciudades en total. Dos aerolíneas de alto renombre, Aeropapantla y Aerocenzontle, ofrecen vuelos alrededor de Máxico. Aeropapantla ofrece vuelos directos desde cualquier ciudad hasta cualquier otra ciudad de Máxico. Aerocenzontle solo ofrece vuelos directos desde cualquier ciudad de la isla Mayor a cualquier otra ciudad de la isla Mayor.
P2. Matilda dibuja cuadriláteros
Matilda dibuja 12 cuadriláteros. El primer cuadrilátero que dibuja es un rectángulo de lados enteros y 7 veces más ancho que alto. Cada vez que termina de dibujar un cuadrilátero, une los puntos medios de cada pareja de lados consecutivos con segmentos de recta para así obtener el siguiente cuadrilátero. Se sabe que el último cuadrilátero que dibuja Matilda es el primero en tener área menor a 1. ¿Cuál es el área máxima posible del primer cuadrilátero?
P1. Enciclopedia de Gabriela
6.- Punto ideal de semejanza
Encuentra todos los $n \geq 3$, tales que existe un polígon convexo de $n$ lados $A_1A_2 \dots A_n$, que tenga las siguientes características:
- todos los ángulos internos de $A_1A_2 \dots A_n$ son iguales
- no todos los lados de $A_1A_2 \dots A_n$ son iguales
- existe un triángulo $T$ y un punto $O$ en el interior de $A_1A_2 \dots A_n$ tal que los $n$ triángulos $OA_1A_2$, $OA_2A_3$, $\dots$, $OA_{n-1}A_n$ son todos semejantes a $T$
NOTAS:
5.- Borrando divisores de un pizarrón
Sea $n > 1$ un entero positivo y sean $d_1 < d_2 < ... < d_m$ sus $m$ enteros positivos de manera que $d_1 = 1$ y $d_m = n$. Lalo escribe los siguientes $2m$ números en un pizarrón:
$d_1 , d_2 , ... , d_m , d_1 + d_2 , d_2 + d_3 , ... , d_{m-1} + d_m , N$
donde $N$ es un entero positivo. Después Lalo borra los números repetidos (por ejemplo, si un número repetido aparece 2 veces, el borrará uno de los dos). Después de esto, Lalo nota que los números en el pizarrón son precisamente la lista completa de divisores positivos de $N$. Encuentra todos los posibles valores del entero positivo $n$.
4.- También arquitectos
Sea $n$ un entero positivo. En un jardín de $n \times n$ cuyos lados dan al Norte, Sur, Este y Oeste se va a construir una fuente usando plataformas de $1 \times 1$ que cubra todo el jardín.
Ana colocará las plataformas todas a diferente altura. Después, Beto pondrá salidas de agua en algunas de las plataformas.
El agua de cada plataforma puede bajar a las plataformas contiguas (hacia el Norte, Sur, Este y Oeste) que tengan menor altura que la plataforma de donde viene el agua, siguiendo su flujo siempre que pueda dirigirse a plataformas de menor altura. El objetivo de Beto es que el agua llegue a todas las plataformas.
3.- Orquesta Matemática
Sea $n>1$ un entero y sea $d_1 < d_2 < \dots < d_m$ la lista completa de sus divisiores positivos, incluidos $1$ y $n$. Los $m$ instrumentos de una orquesta matemática se disponen a tocar una pieza musical de $m$ segundos, donde el instrumento $i$ tocará una nota de tono $d_i$ durante $s_i$ segundos (no necesariamente consecutivos), donde $d_i$ y $s_i$ son enteros positivos. Decimos que esta pieza tiene sonoridad $S = s_1 + s_2 + \cdots + s_m $.
2.- Ataque de torres en un tablero cúbico.
Sea $n$ un entero positivo. David tiene 6 tableros de ajedrez de $n \times n$ que ha dispuesto de manera que formen las 6 caras de un cubo de $n \times n \times n$. Se dice que dos casillas $a$ y $b$ de este nuevo tablero cúbico están alineadas si podemos conectarlas por medio de un camino de casillas $a = c_1, c_2, \dots, c_m = b$ de manera que cada pareja de casillas consecutivas en el camino comparten un lado, y los lados que la casilla $c_i$ comparte con sus vecinas son lados opuestos del cuadrado $c_i$, para $i = 2, 3, \dots, m-1$. Diremos que dos torres colocadas sobre el tablero se atacan; si las casillas que ocupan están alineadas. David coloca algunas torres sobre el tablero de forma que ninguna ataque a otra.
1.- Números Tlahuicas
Un número $x$ es Tlahuica si existen números primos distintos $p_1, p_2 \dots, p_k$ tales que
$$x= \frac{1}{p_1} + \frac{1}{p_2} + ... + \frac{1}{p_k}$$Determina el mayor número Tlahuica que satisface las dos propiedades siguientes:
- 0 < x < 1
- existe un número entero $0 < m \leq 2022$ tal que $mx$ es un entero.
El 6 del último selectivo 2022
Se definen las sucesiones xn y yn mediante las siguientes reglas:
- x0 = 2, x1 = 5, xn+1 = xn + 2xn-1
- y0 = 3, y1 = 4, yn+1 = yn + 2yn-1
Demuestra que no hay números que estén en ambas sucesiones.
Sin miedo al factorial
Determina el menor entero positivo n tal que para todo entero positivo u se cumple que n + u! sea un número de al menos 4 divisores