Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos:
Problema

P6. Más de Desigualdades Tamaulipas

Enviado por Samuel Elias el 23 de Octubre de 2025 - 12:57.
Sean $a, \ b, \ c, \ d$ números reales positivos tales que $a>c$, $d>b$. Si se cumplen las siguientes dos condiciones:
$$a+\sqrt{b} \geq c+\sqrt{d} \  \mathrm {,} \ \sqrt{a}+b \leq \sqrt{c}+d$$
Demuestra que $a+b+c+d > 1$
Problema

P5. Sobreexplotando la configuración del ortocentro con una concurrencia.

Enviado por Samuel Elias el 23 de Octubre de 2025 - 12:56.

Sea $ABC$ un triángulo acutángulo y $H$ su ortocentro. Sea $\Omega$ el circunírculo de $BHC$. Las rectas $AH$ y $AC$ cortan a $\Omega$ en $D \neq H$ y $E\neq C$ respectivamente. Sea $F \neq D$ la segunda intersección de $CD$ con el circuncírculo de $AED$. Demuestra que $AF, \ BC$ y $DE$ concurren.

Problema

P4. La vaca saturno saturnita y su polígono de focos

Enviado por Samuel Elias el 23 de Octubre de 2025 - 12:53.
Sea $n\ge 3$ un entero positivo. En cada uno de los vértices de un $n$-ágono regular y en el centro de dicho polígono, hay un foco que puede estar encendido o apagado.
Problema

P3. Paralelas con una tangente

Enviado por Samuel Elias el 23 de Octubre de 2025 - 12:45.

Sea $ABC$ un triángulo acutángulo, $H$ su ortocentro y $D$ el pie de altura desde $A$ a $BC$, de tal forma que $AH=HD$. Sea $\mathcal{Z}$ el circuncírculo de $BHC$. Sea $\ell$ la recta tangente a $\mathcal{Z}$ por $H$, de tal forma que $\ell$ corta a $AB$ en $S$ y a $AC$ en $T$. Sean $M$ y $N$ los puntos medios de $BH$ y $CH$ respectivamente. Demuestra que $SM$ es paralela a $TN$.

Problema

P2. Sam vs Hugo, monedas en fila

Enviado por Samuel Elias el 23 de Octubre de 2025 - 12:44.

Sam y Hugo juegan con $n$ monedas, todas con $A$ en una cara y $S$ en la otra. Las monedas están puestas en fila sobre la mesa. Sam y Hugo se turnan. En su turno, Sam puede voltear una o más monedas, siempre que no voltee dos adyacentes; mientras Hugo elige exactamente dos monedas adyacentes y las voltea. Al comenzar el juego, todas las monedas muestran $A$. Sam juega primero y gana si todas las monedas muestran $S$ simultáneamente en cualquier momento. Halla todos los $n\geq 1$ con los que Hugo puede evitar que Sam gane.

Problema

P1. El regreso del piso, el ascenso del techo

Enviado por Samuel Elias el 23 de Octubre de 2025 - 12:41.
Encuentra todos los números enteros positivos $x$ para el cual existe un número real $R$ tal que: 
$$ 4\lfloor R\rfloor^2 + 4\lceil{R}\rceil +1 = x^2$$
Problema

6. Aplicación del EFR

Enviado por Samuel Elias el 4 de Octubre de 2025 - 17:06.
Sean $C_1$ y $C_2$ dos circunferencias de mismo radio que se intersectan en $B$ y $C$ y sea $M$ el punto medio de $BC$. Sea $G$ un punto en $C_1$ de tal forma que el segmento $CG$ corte a $C_2$ en $E$ y $E$ quede entre $G$ y $C$. Sea $H$ un punto en $C_2$ de tal forma que el segmento $BH$ corte a $C_1$ en $F$ y $F$ quede entre $B$ y $H$. Si $E, \ M, \ F$ son colineales:
 
$i)$ Demuestra que $G, \ H, \ M$ son colineales.
 
$ii)$ Sean $O_1$ y $O_2$ los centros de $C_1$ y $C_2$ respectivamente. Demuestra que $O_1F$ y $O_2E$ son paralelas. 
Problema

5. Divisores cuadrados vs el doble

Enviado por Samuel Elias el 4 de Octubre de 2025 - 17:02.

Sea $1=d_1<d_2<\dots<d_k=n$ todos los divisores del entero positivo $n$, donde $k\geq 5$. Determina si exsiste alguna $n$ que cumpla que $$2n=d_3^2+d_4^2+d_5^2$$

Problema

4. Un cuadrado mágico perfecto

Enviado por Samuel Elias el 4 de Octubre de 2025 - 17:00.

Los números del 1 al 360 se reparten en 9 subconjuntos, de tal forma que la suma de cada subconjunto se coloca en un cuadrado de $3 \times 3$. ¿Será posible que el cuadrado de $3 \times 3$ sea un cuadrado mágico?

Problema

3. Una desigualdad, muchas soluciones.

Enviado por Samuel Elias el 4 de Octubre de 2025 - 16:58.
Sean $x,y$ números reales positivos tal que $x+y=1$. Demuestra que  $$\frac{x}{y+1} + \frac{y}{x+1} \geq \frac{2}{3}$$
Y encuentra en qué valores de $(x, y)$ se da la igualdad.
Problema

2. Perpendicular a un lado con dos circunferencias.

Enviado por Samuel Elias el 4 de Octubre de 2025 - 16:51.

Sea $ABC$ un triángulo acutángulo con $AB < AC$ y $\Gamma$ el círculo que pasa por los 3 vértices de $ABC$. Sea $\omega$ la circunferencia de radio $AB$ con centro $A$. $\omega$ corta a $\Gamma$ en $F \neq B$. Sea $G$ la segunda intersección de $CF$ con $\omega$ tal que $G \neq F$. Demuestra que $AC$ es perpendicular a $BG$.

Problema

P1. Aparición épica de Deker en la OMM Tamaulipas

Enviado por Samuel Elias el 3 de Octubre de 2025 - 17:41.

Sea $n$ un entero positivo y sea $s(n)$ la suma de sus dígitos. Decimos que $n$ es $deker$ si $2s(n)=s(2n)$. Demuestra que existen más de 2025 números $deker$ de 5 dígitos. 

Problema

(CIIM P5, 2013) Matrices y conjugación

Enviado por jesus el 26 de Septiembre de 2025 - 15:53.
Sean \( A \) y \( B \) matrices de tamaño \( n \times n \) con entradas complejas. Demostrar que existen una matriz \( T \) y una matriz invertible \( S \) tales que \[ B = S(A + T)S^{-1} - T \]
Problema

P6. Desigualdades Tamaulipas para un número real

Enviado por Samuel Elias el 22 de Julio de 2025 - 18:32.

Sean $a$ y $b$ enteros positivos y $c$ un número real positivo tal que $$\frac{a+1}{b+c}=\frac{b}{a}$$

Demuestra que $c \geq 1$.

 

Problema

P5. Revive la Geocombi en un 15-ágono regular

Enviado por Samuel Elias el 22 de Julio de 2025 - 18:29.

En un círculo, se dibuja una 15-ágono regular y se forman triángulos arbitrarios conectando 3 de sus vértices. ¿Cuántos triángulos no congruentes se pueden dibujar?

Problema

P4. 4 números en el 4 del selectivo

Enviado por Samuel Elias el 22 de Julio de 2025 - 18:26.

Sean $a,b,k$ enteros no negativos y sea $p$ un número primo positivo. Encuentra todas las cuaternas $(a,b,p,k)$ tales que $$a^2+b^2+p^2=2^k$$

Problema

P3. Coloreando la recta numérica

Enviado por Samuel Elias el 22 de Julio de 2025 - 18:21.

 Cada número entero de la recta numérica se pinta de rojo o azul según las siguientes reglas:

  • El número $1$ es rojo.
  • Si $a$ y $b$ son dos números rojos, no necesariamente diferentes, entonces los números $a-b$ y $a + b$ tienen colores diferentes.

Determina el color del número $2025$.

Problema

P2. Números Tamaulipecos al estilo de Gauss

Enviado por Samuel Elias el 22 de Julio de 2025 - 18:17.

Sean $m,n$ enteros positivos tal que $m$ tiene $n$ dígitos. Sea $m=\overline{a_n\dots a_2a_1}$. Decimos que $m$ es $tamaulipeco$ si se cumple que $a_{n-k+1}+a_k=3$ para todo $1 \leq k \leq n$. Sea $s(m)$ la suma de los dígitos de $m$. Encuentra el menor número $tamaulipeco$ tal que $s(m)=2025$.

Problema

P1. 24 sí y solo sí 48

Enviado por Samuel Elias el 22 de Julio de 2025 - 18:15.

Sea $ABC$ un triángulo con $AB<AC$. Sea $D$ un punto sobre el segmento $AC$ tal que $AD = AB$. Demuestra que $\angle DBC=24^{\circ}$ sí y sólo sí $\angle ABC - \angle ACB = 48^{\circ}$.

Problema

P6. Matilda colocando fichas en la cuadrícula

Enviado por Samuel Elias el 19 de Julio de 2025 - 08:26.

Considere una cuadrícula de $2025 \times 2025$ cuadrados unitarios. Matilda desea colocar en la cuadrícula algunas fichas rectangulares, posiblemente de diferentes tamaños, de modo que cada lado de cada ficha se encuentre sobre una línea de la cuadrícula y cada cuadrado unitario esté cubierto como máximo por una ficha.

Determine el mínimo número de fichas que Matilda debe colocar para que cada fila y cada columna de la cuadrícula tenga exactamente un cuadrado unitario que no esté cubierto por ninguna ficha.