Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos:
Problema

P4. OMM 1989. Números en expansión decimal

Enviado por jmd el 6 de Julio de 2010 - 11:18.

Encuentre el entero positivo mas pequeño $ n $ tal que, si su expansión decimal es $ n=a_ma_{m-1}\ldots{a_2}a_1a_0 $ y $r$ es el número cuya expansión decimal es $r=a_1a_0a_ma_{m-1}\ldots{a_2}0$, entonces $r$ es el doble de $n$.
 

Problema

P3. OMM 1989. Número de 1989 cifras

Enviado por jmd el 6 de Julio de 2010 - 11:16.

Pruebe que no existe un número positivo de 1989 cifras que tenga al menos tres de ellas iguales a 5 y tal que la suma de todas las cifras sea igual al producto de las mismas.

Problema

P2. OMM 1989. Múltiplos encadenados

Enviado por jmd el 6 de Julio de 2010 - 11:13.

Encuentre dos números enteros $a$ y $b$ tales que:

  • $b^2$ es múltiplo de $a$;
  • $a^3$ es múltiplo de $b^2$;
  • $b^4$ es múltiplo de $a^3$;
  • $a^5$ es múltiplo de $b^4$;
  • pero $b^6$ no es múltiplo de $a^5$.
Problema

P1. OMM 1989. Áreas y medianas

Enviado por jmd el 6 de Julio de 2010 - 11:09.

Considere un triángulo $ABC$ en el que la longitud del lado $AB$ es 5, las medianas por $A$ y por $B$ son perpendiculares entre sí y el área es 18. Hallar las longitudes de los lados $BC$ y $AC$.

Problema

P8. OMM 1988. Esfera en octaedro

Enviado por jmd el 5 de Julio de 2010 - 19:20.

Calcule el volumen del octaedro que circunscribe a una esfera de radio 1.
 

Problema

P7. OMM 1988. Subconjuntos ajenos de {1,2,...,m}

Enviado por jmd el 5 de Julio de 2010 - 19:18.

Si $A$ y $B$ son subconjuntos ajenos del conjunto $\{1,2,\ldots,m\}$ y la suma de los elementos de $A$ es igual a la suma de los elementos de $B$, pruebe que el número de elementos de $A$ y también de $B$ es menor que $m/\sqrt{2}$
 

Problema

P6. OMM 1988. Lugar geométrico del incentro

Enviado por jmd el 5 de Julio de 2010 - 19:13.

Considere dos puntos fijos $B$ y $C$ de una circunferencia $W$. Encuentre el lugar geométrico de las intersecciones de las bisectrices de los triángulos $ABC$, cuando $A$ es un punto que recorre $W$.

Problema

P5. OMM 1988. Manipulación algebraica con el MCD

Enviado por jmd el 5 de Julio de 2010 - 19:12.

Si $a$ y $b$ son dos enteros positivos primos relativos y $ n $ es un entero, pruebe que el máximo común divisor de $a^2+b^2-nab$ y $a+b$ divide a $n+2$

Problema

P4. OMM 1988. Ocho enteros entre uno y ocho

Enviado por jmd el 5 de Julio de 2010 - 19:07.

¿Cuántas maneras hay de escoger ocho enteros $a_1,a_2,a_3,\ldots,a_8$ no necesariamente distintos, tales que $1\leq{a_1}\leq\ldots\leq{a_8}\leq8$?
 

Problema

P3. OMM 1988. Área de triángulo de tangentes comunes

Enviado por jmd el 5 de Julio de 2010 - 19:05.

Considere dos circunferencias tangentes exteriormente y de radios distintos; sus tangentes comunes forman un triángulo. Calcule el área de dicho triángulo en términos de los radios de las circunferencias.
 

Problema

P2. OMM 1988. Expresiones equiresiduales (módulo 19)

Enviado por jmd el 5 de Julio de 2010 - 18:56.

Si $a$ y $b$ son enteros positivos, pruebe que 19 divide a $11a+2b$ si y sólo si 19 divide a $18a+5b$
 

Problema

P8. OMM 1987. El último de la primera nacional (de geometría tridimensional)

Enviado por jesus el 5 de Julio de 2010 - 11:41.
  1. Tres rectas en el espacio l, m, n concurren en el punto S y un plano perpendicular a m corta a l, m, n en A, B y C respectivamente. Suponga que los ángulos ASB y BSC son de 45° y que el ángulo ABC es recto. Calcule el ángulo ASC.
  2. Si un plano perpendicular a l corta a l, m, n en P, Q y R respectivamente y si SP = 1, calcule los lados del triángulo PQR.
Problema

P7. OMM 1987. Problema clásico de cocientes de polinomios de la OMM

Enviado por jesus el 5 de Julio de 2010 - 10:29.

Demuestre que si $n$ es un entero positivo, entonces $$\frac{n^2 + n -1}{n^2 + 2n}$$ es una fracción irreducible (simplificada).

Problema

P6. OMM 1987. Divisibilidad clásico de la OMM

Enviado por jesus el 4 de Julio de 2010 - 16:14.

Demuestre que para cualquier entero positivo $n$, el número $(n^3-n)(5^{8n+4}+3^{4n+2})$ es múltiplo de 3804.

Problema

P5. OMM 1987. Triángulo rectángulo y tres área iguales imposibles

Enviado por jesus el 3 de Julio de 2010 - 19:48.

Considere un triángulo rectángulo ABC donde la hipotenusa es BC. M un punto en BC; P y Q las proyecciones de M en AB y BC, respectivamente. Pruebe que, para ninguno de tales puntos M, son iguales las áreas de  BPM, MQC y AQMP (las tres al mismo tiempo).

Problema

P4. OMM 1987. Producto de enteros menores que 100 y con tres divisores

Enviado por jesus el 3 de Julio de 2010 - 15:43.

Calcule el producto de todos los enteros positivos menores que 100, y que tengan exactamente tres divisores positivos. Compruebe que dicho número es un cuadrado perfecto.

Problema

P3. OMM 1987. Lugar geométrico de la proyección de un punto

Enviado por jesus el 3 de Julio de 2010 - 14:49.

Considere dos rectas $\ell$ y $\ell'$ y un punto fijo P que diste lo mismo de $\ell$, que de $\ell'$. ¿Qué lugar geométrico describen los puntos M que son proyección de P sobre AB, donde A está en $\ell$, B está en $\ell'$, y el ángulo APB es recto.

Problema

P2. OMM 1987. Divisores de 20 factorial

Enviado por jesus el 3 de Julio de 2010 - 14:43.

¿Cuántos enteros positivos dividen a 20! ? (20! = 1×2×3×· · ·×19×20).

Problema

Circunferencias inscritas en ángulo e isósceles

Enviado por jmd el 1 de Julio de 2010 - 20:32.

Dos circunferencias están inscritas entre los lados de un triángulo isósceles $ABC$ (con $AB=AC$) y los de un ángulo, uno de los cuales pasa por A y el otro incluye la base $BC$ del isósceles. Encontrar la relación entre la altura de $A$ respecto a la base $BC$ y los radios de las circunferencias.

Problema

Círculos internamente tangentes

Enviado por jmd el 25 de Junio de 2010 - 11:35.

Sean $\Gamma$ y $\Gamma_1$ dos círculos tangentes internamente en $A$ y con centros $O$ y $O_1$, respectivamente. Sea $B$ el punto en $\Gamma$ diametralmente opuesto al punto $A$, y $C$ un punto en $\Gamma$ tal que $BC$ es tangente a $\Gamma_1$ en $P$. Sea $A'$ el punto medio de $BC$. Suponiendo que $O_1A'$ es paralela a $AP$, calcular la razón $r/r_1$.