Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos:
Problema

Problema 3, IMO 2010

Enviado por jesus el 19 de Julio de 2010 - 19:44.

Sea $\mathbb{N}$ el conjunto de los enteros positivos. Determine todas las funciones $g : \mathbb{N} \to \mathbb{N}$ tales que $$\left( g(m) + n\right) \left(m + g(n) \right) $$
es un cuadrado perfecto para todo $m, n \in \mathbb{N}$.

Problema

Problema 5, IMO 2010

Enviado por jesus el 18 de Julio de 2010 - 20:58.

En cada una de las seis cajas $B_1,B_2,B_3,B_4,B_5,B_6$ hay inicialmente sólo una moneda. Se permiten dos tipos de operaciones:

  • Tipo 1: Elegir una caja no vacía $B_j$ , con $1 \leq j \leq 5$. Retirar una moneda de $B_j$ y añadir dos monedas a $B_{j+1}$.
  • Tipo 2: Elegir una caja no vacía $B_k$, con $1 \leq k \leq 4$. Retirar una moneda de $B_k$ e intercambiar los contenidos de las cajas (posiblemente vacías) $B_{k+1}$ y $B_{k+2}$.

Determine si existe una sucesión finita de estas operaciones que deja a las cajas $B_1,B_2,B_3,B_4,B_5$ vacías y a la caja $B_6$ con exactamente $2010^{2010^{2010}}$ monedas. (Observe que $a^{b^c} = a^{(b^c)}$.)

Problema

Problema 2, IMO 2010

Enviado por jesus el 18 de Julio de 2010 - 17:59.

Sea $ABC$ un triángulo, $I$ su incentro y $\Gamma$ su circunferencia circunscrita. La recta $AI$ corta de nuevo a $\Gamma$ en $D$. Sean $E$ un punto en el arco $\widehat{BDC}$ y $F$ un punto en el lado $BC$ tales que
$$\angle BAF = \angle CAE < \frac{1}{2} \angle BAC.$$
Sea $G$ el punto medio del segmento $IF$. Demuestre que las rectas $DG$ y $EI$ se cortan sobre $\Gamma$.

Problema

Problema 4, IMO 2010

Enviado por jmd el 18 de Julio de 2010 - 16:25.

Sea $P$ un punto en el interior del triángulo $ABC$ con circunferencia circunscrita $\Gamma$. Las rectas $AP,BP,CP$ cortan otra vez a $\Gamma$ en los puntos $K,L,M$, respectivamente. La recta tangente a $\Gamma$ en $C$ corta a la recta $AB$ en $S$. Demostrar que si $SC=SP$ entonces $MK=ML$.

Problema

Problema 1, IMO 2010

Enviado por jesus el 18 de Julio de 2010 - 13:13.

Determine todas las funciones $f : \mathbb{R} \to \mathbb{R}$ tales que $$f(\lfloor x \rfloor y)= f(x) \lfloor f(y) \rfloor$$ para todos los números $x, y \in \mathbb{R}$. ($\lfloor z\rfloor$ denota el mayor entero que es menor o igual que $z$.)

Problema

Chicas Fresa en Palacio

Enviado por jmd el 16 de Julio de 2010 - 07:57.

Las chicas fresa andan en Palacio de Hierro (sólo les faltan los lentes para irse de vacaciones a Los Cabos):

K: "¿Ya vieron? ¡Qué looser! ¡Son piratas! Nada que ver conmigo, yo quiero unos Carrera, Champion como los de Lady Gaga". 

Problema

P6 OMM 2001. Cuatro axiomas para colección de monedas

Enviado por jmd el 13 de Julio de 2010 - 22:08.

Un coleccionista de monedas raras tiene monedas de denominaciones $1, 2, 3, \ldots, n$ (tiene muchas monedas de cada denominación). Desea poner algunas de sus monedas en las cajas de manera que se cumplan las siguientes condiciones:

Problema

P5 OMM 2001. Probar isósceles... ¿cómo se prueba isósceles?

Enviado por jmd el 13 de Julio de 2010 - 22:05.

Sea $ABC$ un triángulo tal que $AB< AC$ y el ángulo $BAC$ es el doble del ángulo $BCA$. Sobre el lado $AC$ se toma un punto $D$ tal que $CD = AB$. Por el punto $B$ se traza una recta $l$ paralela a $AC$. La bisectriz exterior del ángulo en $A$ intersecta a $l$ en el punto $M$, y la paralela a $AB$ por $C$ intersecta a $l$ en el punto $N$. Prueba que $MD = DN$.

Problema

P4 OMM 2001. Lista de residuos cuadráticos

Enviado por jmd el 13 de Julio de 2010 - 22:02.

Dados dos enteros positivos $n$ y $a$, se forma una lista de 2001 números como sigue:

  • el primer número es $a$;
  • a partir del segundo, cada número es el residuo que se obtiene al dividir al cuadrado del anterior entre $n$.

A los números de la lista se les ponen los signos $+$ y $-$, alternadamente
empezando con $+$. Los números con signo así obtenidos se suman, y a esa suma se le llama suma final para $n$ y $a$.

¿Para qué enteros $n \geq 5$ existe alguna $a$ tal que $2 \leq a \leq n/2$, y la suma final para $n$ y $a$ es positiva?

Problema

P3 OMM 2001. Segmentos congruentes --sobre diagonal de un cíclico

Enviado por jmd el 13 de Julio de 2010 - 21:56.

En un cuadrilátero $ABCD$, inscrito en una circunferencia, llamemos $P$ al punto de intersección de las diagonales $AC$ y $BD$, y sea $M$ el punto medio de $CD$. La circunferencia que pasa por $P$ y que es tangente a $CD$ en $M$ corta a $BD$ y $AC$ en los puntos $Q$ y $R$ respectivamente. Se toma un punto $S$ sobre el segmento $BD$ de tal manera que $BS = DQ$. Por $S$ se traza una paralela a $AB$ que corta a $AC$ en un punto $T$. Prueba que $AT = RC$.

Problema

P2 OMM 2001. Un problema pelotudo

Enviado por jmd el 13 de Julio de 2010 - 21:53.

Se tienen algunas pelotas de colores (son por lo menos tres colores), y por lo menos tres cajas. Las pelotas se ponen en las cajas de manera que no quede vacía ninguna caja y que no haya tres pelotas de colores distintos que estén en tres cajas distintas. Prueba que hay una caja con todas las pelotas que están fuera de ella son del mismo color.

Problema

P1 OMM 2001. Múltiplos de 3 y 7 con dígitos 3 o 7

Enviado por jmd el 13 de Julio de 2010 - 21:50.

Encuentra todos los números de 7 dígitos que son múltiplos de 3 y de 7,
y cada uno de cuyos dígitos es 3 o 7.

Problema

P6 OMM 2000. Configuración sobre un triángulo obtusángulo

Enviado por jmd el 13 de Julio de 2010 - 20:27.

Sea $ABC$ un triángulo en el que $\angle{B} >90$ y en el que un punto $H$ sobre $AC$ tiene la propiedad de que $AH = BH$ y $BH$ es perpendicular a $BC$. Sean $D$ y $E$ los puntos medios de $AB$ y $BC$ respectivamente. Por $H$ se traza una paralela a $AB$ que corta a $DE$ en $F$. Prueba que $\angle BCF = \angle ACD$.
 

Problema

P5 OMM 2000. Operación sobre rectángulos --en tablero nxn

Enviado por jmd el 13 de Julio de 2010 - 20:24.

Se tiene un tablero de $n\times n$, pintado como tablero de ajedrez. Está permitido efectuar la siguiente operación en el tablero:

  • Escoger un rectángulo en la cuadrícula de tal manera que las longitudes de sus lados sean ambas pares o ambas impares, pero que no sean las dos iguales a 1 al mismo tiempo, e
  • invertir los colores de los cuadritos de ese rectángulo.

Encuentra para qué valores de $ n $ es posible lograr que todos los cuadritos queden de un mismo color después de haber efectuado la operación el número de veces que sea necesario. (Nota: Las dimensiones de los rectángulos que se escogen pueden ir cambiando).

Problema

P4 OMM 2000. Número de primos hasta el primer compuesto

Enviado por jmd el 13 de Julio de 2010 - 20:20.

Para $a$ y $b$ enteros positivos, no divisibles entre $5$, se construye una lista de números como sigue:

  • El primer número es 5 y,
  • a partir del segundo, cada número se obtiene multiplicando el número que le precede (en la lista) por $a$, y sumándole $b$.

(Por ejemplo, si $a = 2$ y $b = 4$, entonces los primeros tres números de la
lista serán: 5, 14, 32 (pues $14 = 5\cdot2 + 4$ y $32 = 14\cdot2 + 4$.)

¿Cuál es la cantidad máxima de primos que se pueden obtener en la lista antes de obtener el primer número no primo?

Problema

P3 OMM 2000. Regla aditiva --de formación de un conjunto

Enviado por jmd el 13 de Julio de 2010 - 20:07.

Dado un conjunto $A$ de enteros positivos, construimos el conjunto $A'$ poniendo todos los elementos de $A$ y todos los enteros positivos que se pueden obtener de la siguiente manera:

  • Se escogen algunos elementos de $A$, sin repetir, y a cada uno de esos números se le pone el signo $+$ o el signo $-$;
  • luego se suman esos números con signo, y el resultado se pone en $A'$.

Por ejemplo, si $A = {2, 8, 13, 20}$, entonces algunos elementos de $A'$ son 8 y 14 (pues 8 es elemento de $A$, y 14 = 20+2-8).

Problema

P2 OMM 2000. Triángulo de números --con regla simple de formación

Enviado por jmd el 13 de Julio de 2010 - 19:59.

Se construye un triángulo como el de la figura, pero empezando con los números del 1 al 2000.

Problema

P1 OMM 2000. Puntos de tangencia concíclicos

Enviado por jmd el 13 de Julio de 2010 - 19:56.

Sean $A, B, C, D$ circunferencias tales que $A$ es tangente exteriormente a $B$ en $P$, $B$ es tangente exteriormente a $C$ en $Q$, $C$ es tangente exteriormente a $D$ en $R$, y $D$ es tangente exteriormente a $A$ en $S$. Supón que $A$ y $C$ no se intersectan, ni tampoco $B$ y $D$.

  • Prueba que los puntos $P, Q, R$ y $S$ están todos sobre una circunferencia.

Supón además que $A$ y $C$ tienen radio 2, $B$ y $D$ tienen radio 3, y la distancia entre los centros de $A$ y $C$ es 6.

  • Determina el área del cuadrilátero $PQRS$.
Problema

P6 OMM 1999. Cubrimiento con fichas de dominó

Enviado por jmd el 13 de Julio de 2010 - 19:23.

Se dice que un polígono es ortogonal si todos sus lados tienen longitudes enteras y cada dos lados consecutivos son perpendiculares. Demuestre que si un polígono ortogonal puede cubrirse con rectángulos de $2 \times1$ (sin que éstos se traslapen) entonces al menos uno de sus lados tiene longitud par.

Problema

P5 OMM 1999. Bisectrices exteriores de trapecio

Enviado por jmd el 13 de Julio de 2010 - 19:20.

$ABCD$ es un trapecio con $AB$ paralelo a $CD$. Las bisectrices exteriores de los ángulos $B$ y $C$ se intersectan en $P$. Las bisectrices exteriores de los ángulos $A$ y $D$ se intersectan en $Q$. Demuestre que la longitud de $PQ$ es igual a la mitad del perímetro del trapecio $ABCD$.