Problemas
También puedes compartirnos alguno de tus problemas favoritos:
P6 OMM 2002. Doblez en un rectángulo
Sea $ABCD$ un cuadrilátero con $AD$ paralelo a $BC$, los ángulos en $A$ y $B$ rectos y tal que el ángulo $CMD$ es recto, donde $M$ es el punto medio de $AB$. Sean $K$ el pie de la perpendicular a $CD$ que pasa por $M$, $P$ el punto de intersección de $AK$ con $BD$ y $Q$ el punto de intersección de $BK$ con $AC$. Demuestra que el ángulo $AKB$ es recto y que $$\frac{KP}{PA} + \frac{KQ}{QB} = 1$$
P2 OMM 2002. Circuncírculo de la mitad de un paralelogramo
Sean $ABCD$ un paralelogramo y $\kappa$ la circunferencia circunscrita al triángulo $ABD$. Sean $E$ y $F$ las intersecciones de $\kappa$ con los lados (o sus prolongaciones) $BC$ y $CD$, respectivamente ($E$ distinto de $B$ y $F$ distinto de $D$). Demuestra que el circuncentro del triángulo $CEF$ está sobre $\kappa$.
Problema 2, IMO 2010
Sea $ABC$ un triángulo, $I$ su incentro y $\Gamma$ su circunferencia circunscrita. La recta $AI$ corta de nuevo a $\Gamma$ en $D$. Sean $E$ un punto en el arco $\widehat{BDC}$ y $F$ un punto en el lado $BC$ tales que
$$\angle BAF = \angle CAE < \frac{1}{2} \angle BAC.$$
Sea $G$ el punto medio del segmento $IF$. Demuestre que las rectas $DG$ y $EI$ se cortan sobre $\Gamma$.
Problema 4, IMO 2010
Sea $P$ un punto en el interior del triángulo $ABC$ con circunferencia circunscrita $\Gamma$. Las rectas $AP,BP,CP$ cortan otra vez a $\Gamma$ en los puntos $K,L,M$, respectivamente. La recta tangente a $\Gamma$ en $C$ corta a la recta $AB$ en $S$. Demostrar que si $SC=SP$ entonces $MK=ML$.
P5 OMM 2001. Probar isósceles... ¿cómo se prueba isósceles?
Sea $ABC$ un triángulo tal que $AB< AC$ y el ángulo $BAC$ es el doble del ángulo $BCA$. Sobre el lado $AC$ se toma un punto $D$ tal que $CD = AB$. Por el punto $B$ se traza una recta $l$ paralela a $AC$. La bisectriz exterior del ángulo en $A$ intersecta a $l$ en el punto $M$, y la paralela a $AB$ por $C$ intersecta a $l$ en el punto $N$. Prueba que $MD = DN$.
P3 OMM 2001. Segmentos congruentes --sobre diagonal de un cíclico
En un cuadrilátero $ABCD$, inscrito en una circunferencia, llamemos $P$ al punto de intersección de las diagonales $AC$ y $BD$, y sea $M$ el punto medio de $CD$. La circunferencia que pasa por $P$ y que es tangente a $CD$ en $M$ corta a $BD$ y $AC$ en los puntos $Q$ y $R$ respectivamente. Se toma un punto $S$ sobre el segmento $BD$ de tal manera que $BS = DQ$. Por $S$ se traza una paralela a $AB$ que corta a $AC$ en un punto $T$. Prueba que $AT = RC$.
P6 OMM 2000. Configuración sobre un triángulo obtusángulo
Sea $ABC$ un triángulo en el que $\angle{B} >90$ y en el que un punto $H$ sobre $AC$ tiene la propiedad de que $AH = BH$ y $BH$ es perpendicular a $BC$. Sean $D$ y $E$ los puntos medios de $AB$ y $BC$ respectivamente. Por $H$ se traza una paralela a $AB$ que corta a $DE$ en $F$. Prueba que $\angle BCF = \angle ACD$.
P1 OMM 2000. Puntos de tangencia concíclicos
Sean $A, B, C, D$ circunferencias tales que $A$ es tangente exteriormente a $B$ en $P$, $B$ es tangente exteriormente a $C$ en $Q$, $C$ es tangente exteriormente a $D$ en $R$, y $D$ es tangente exteriormente a $A$ en $S$. Supón que $A$ y $C$ no se intersectan, ni tampoco $B$ y $D$.
- Prueba que los puntos $P, Q, R$ y $S$ están todos sobre una circunferencia.
Supón además que $A$ y $C$ tienen radio 2, $B$ y $D$ tienen radio 3, y la distancia entre los centros de $A$ y $C$ es 6.
- Determina el área del cuadrilátero $PQRS$.
P5 OMM 1999. Bisectrices exteriores de trapecio
$ABCD$ es un trapecio con $AB$ paralelo a $CD$. Las bisectrices exteriores de los ángulos $B$ y $C$ se intersectan en $P$. Las bisectrices exteriores de los ángulos $A$ y $D$ se intersectan en $Q$. Demuestre que la longitud de $PQ$ es igual a la mitad del perímetro del trapecio $ABCD$.
P3 OMM 1999. Hexágono en triángulo: razón de áreas y concurrencia
Considere un punto $P$ en el interior del triángulo $ABC$. Sean $D, E$ y
$F$ los puntos medios de $AP, BP$ y $CP$ respectivamente y $L, M$ y $N$ los
puntos de intersección de $BF$ con $CE$, $AF$ con $CD$ y $AE$ con $BD$.
- Muestre que el área del hexágono $DNELFM$ es igual a una tercera parte del área del triángulo $ABC$.
- Muestre que $DL, EM$ y $FN$ concurren.
¿Pies alineados? Bueno... ¿de dónde vienen?
Sean $ABC$ un triángulo, $\gamma$ su circunferencia circunscrita (circuncírculo), y $P$ un punto sobre $\gamma$. Demostrar que los pies de las perpendiculares bajadas desde $P$ a los lados del triángulo (o su prolongación) son colineales.
P6 OMM 1998. Planos equidistantes a 5 puntos
Un plano en el espacio es equidistante a un conjunto de puntos si la distancia de cada punto al plano es la misma. ¿Cuál es el mayor número de planos equidistantes a 5 puntos de los cuales no hay 4 en un mismo plano?
P5 OMM 1998. Paralela si y sólo si... ¿Tales?
Sean $B$ y $C$ dos puntos de una circunferencia, y $AB$ y $AC$ las tangentes
desde un punto $A$. Sea $Q$ un punto del segmento $AC$ y $P$ la intersección de $BQ$ con la circunferencia. La paralela a $AB$ por $Q$ corta a $BC$ en $J$. Demuestre que $PJ$ es paralelo a $AC$ si y sólo si $BC^2 = AC \cdot QC$.
P2 OMM 1998. Rayos, ángulo, bisectriz, lugar geométrico...
Dos rayos $l,m$ parten de un mismo punto formando un ángulo $A$, y $P$ es un punto en $l$. Para cada circunferencia $C$, tangente a $l$ en $P$, que corte a $m$ en puntos $Q$ y $R$, $T$ es el punto donde la bisectriz del ángulo $QPR$ corta a $C$. Describe la figura geométrica que forman los puntos $T$. Justifica tu respuesta.
P5 OMM 1997. Triángulo formado por cevianas
Sean $P, Q, R$ puntos sobre los lados de un triángulo $ABC$ con $P$ en el segmento $BC$, $Q$ en el segmento $AC$ y $R$ en el segmento $BA$, de tal manera que si $A'$ es la intersección de $BQ$ con $CR$, $B'$ es la intersección de $AP$ con $CR$, y $C'$ es la intersección de $AP$ con $BQ$, entonces $AB' = B'C',BC' = C'A'$, y $CA' = A'B'$. Calcule el cociente del área del triángulo $PQR$ entre el área del triángulo $ABC$.
P4 OMM 1997. Planos determinados por seis puntos
Dados 3 puntos no alineados en el espacio, al único plano que los contiene le llamamos plano determinado por los puntos. ¿Cuál es el mínimo número de planos determinados por 6 puntos en el espacio si no hay 3 alineados y no están los 6 en un mismo plano?
P2 OMM 1997. Alineados con centroide... ¿Menelao?
En un triángulo $ABC$, sean $P$ y $P'$ puntos sobre el segmento $BC$, $Q$ en $CA$ y $R$ sobre $AB$, de forma que $$\frac{AR}{RB}=\frac{BP}{PC}=\frac{CQ}{QA}=\frac{CP'}{P'B}$$
Sean $G$ el centroide del triángulo $ABC$ y $K$ el punto de intersección de las rectas $AP'$ y $RQ$. Demuestre que los puntos $P, G, K$ son colineales.
P6 OMM 1996. Perpendiculares que miden el lado que cortan
En la figura se muestra un triángulo acutángulo $ABC$ en el que la longitud de $AB$ es menor que la de $BC$ y la de $BC$ es menor que la de $AC$ . Los puntos $A', B'$ y $C'$ son tales que $AA'$ es perpendicular a $BC$, y la longitud
de $AA'$ es igual a la de $BC$; $BB'$ es perpendicular a $AC$ y la longitud de $BB'$ es igual a la de $AC$; $CC'$ es perpendicular a $AB$ y la longitud de $CC'$ es igual a la de $AB$. Además el ángulo $AC'B$ es de 90 grados. Demuestra que $A', B'$ y $C'$ son colineales.
P1 OMM 1996. Cuadrilátero con diagonal trisecada
Sea $ABCD$ un cuadrilátero y sean $P$ y $Q$ los puntos de trisección de la diagonal $BD$ (es decir, $P$ y $Q$ son puntos del segmento $BD$ para los cuales las longitudes $BP, PQ$ y $QD$ son todas iguales). Sean $E$ la intersección de la recta que pasa por $A$ y $P$ con el segmento $BC$, y $F$ la intersección de la recta que pasa por $A$ y $Q$ con el segmento $DC$. Demuestra lo siguiente:
1. Si $ABCD$ es un paralelogramo, entonces $E$ y $F$ son los respectivos puntos medios de los segmentos $BC$ y $CD$.
2. Si $E$ y $F$ son los puntos medios de $BC$ y $CD$, respectivamente, entonces $ABCD$ es un paralelogramo.
P5 OMM 1995. Triángulos de igual área en pentágono
Sea $ABCDE$ un pentágono convexo de manera que los triángulos $ABC,BCD, CDE, DEA$ y $EAB$ son todos de igual área. Demuestra que
$$\frac{1}{4} (ABCDE)<(ABC)<\frac{1}{3} (ABCDE)$$.
(Donde el paréntesis denota el área del polígono dentro de él.)
