Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos:
Problema

Es punto medio si y sólo si el otro es punto medio (OMM 2021 P2)

Enviado por jesus el 20 de Noviembre de 2021 - 23:17.

Sea $ABC$ un triángulo tal que $\angle ACB > 90^\circ$ y sea $D$ el punto de la recta $BC$ tal que $AD$ es perpendicular a $BC$. Considere $\Gamma$ la circunferencia de diámetro $BC$. Una recta que pasa por $D$ es tangente a la circunferencia $\Gamma$ en $P$, corta al lado $AC$ en $M$ (quedando $M$ entre $A$ y $C$) y corta al lado $AB$ en $N$.

Demuestra que $M$ es punto medio de $DP$ si, y sólo si $N$ es punto medio de $AB$.

Problema

Demostrar que es equilatero

Enviado por Milton Lozano A... el 4 de Febrero de 2018 - 13:12.

Sea ABCD un cuadrado.

Se construyen 2 triangulos equilatero hacia afuera, CDE y BCF, se trazan las circunferencia con centro en E y con Centro en F que pasan por CD y BC respectivamente.
Sea P la interseccion de las circunferencias.

Demuestra que el trianguo PDB es equilatero.

Problema

Tangentes si y sólo si perpendiculares

Enviado por German Puga el 13 de Diciembre de 2016 - 17:06.

Sea $ABCD$ un cuadrilátero inscrito en una circunferencia, $l_1$ la recta paralela a $BC$ que pasa por $A$ y $l_2$ la recta paralela a $AD$ que pasa por $B$. La recta $DC$ corta a $l_1$ y $l_2$ en los puntos $E$ y $F$, respectivamente. La recta perpendicular a $l_1$ que pasa por $A$ corta a $BC$ en $P$ y la recta perpendicular a $l_2$ por $B$ corta a $AD$ en $Q$. Sean $\Gamma_1$ y $\Gamma_2$ las circunferencias que pasan por los vértices de los triángulos $ADE$ y $BFC$, respectivamente. Demuestra que $\Gamma_1$ y $\Gamma_2$ son tangentes si y sólo si $DP$ es perpendicular a $CQ$.

Problema

Circunferencias con relación de radios

Enviado por German Puga el 11 de Diciembre de 2016 - 20:49.

Sean $\mathcal{C}_1$ y $\mathcal{C}_2$ dos circunferencias tangentes externamente en $S$ tales que el radio de $\mathcal{C}_2$ es el triple del radio de $\mathcal{C}_1$. Sea $l$ una recta que es tangente a $\mathcal{C}_1$ en $P$ y tangente a $\mathcal{C}_2$ en $Q$, con $P$ y $Q$ distintos de $S$. Sea $T$ el punto en $\mathcal{C}_2$ tal que $TQ$ es diámetro de $\mathcal{C}_2$ y sea $R$ la intersección de la bisectriz de $\angle SQT$ con el segmento $ST$. Demuestra que $QR = RT$

Problema

Punto exterior a un cuadrado

Enviado por German Puga el 29 de Octubre de 2016 - 13:11.

Sea $ABCD$ un cuadrado. P un punto sobre la semicircunferencia de diámetro AB exterior al cuadrado. Sean M y N las intersecciones de PD y PC con AB, respectivamente. Demuestra que $MN^2 = AM \cdot BN$

Problema

Cíclico dentro de un isóceles

Enviado por German Puga el 17 de Septiembre de 2016 - 15:36.

Sea $ABC$ un triángulo con $AB=AC$ de gravicentro $G$. $M$ y $N$ los puntos medios de $AB$ y $AC$ respectivamente y $O$ el circuncentro del trángulo $BCN$. Muestra que $MBOG$ es un cuadrilátero cíclico.

Problema

Geometría del Primer Selectivo 2016

Enviado por Orlandocho el 28 de Agosto de 2016 - 12:53.

Sea $ABCD$ un cuadrilátero cíclico y $E$ y $F$ puntos sobre la recta $AB$ pero fuera del segmento $AB$ con $A$ entre $E$ y $B$ y $B$ entre $A$ y $F$. Demuestra que si $\angle  BED = \angle AFC = \angle DAC$ entonces $EA=BF$.

Problema

Problema 3 - IMO 2016 - Área de un polígono cíclico de coordenadas enteras.

Enviado por jesus el 11 de Julio de 2016 - 14:06.

Sea $P=A_1A_2 \dots A_k$ un polígono convexo en el plano. Los vértices $A_1, A_2, \dots, A_k $ tienen coordenadas enteras y están sobre un círculo. Sea $\mathcal{S}$ el área de $P$. Los cuadrados de las los lados de $P$ son todos divisibles por un entero dado $n$. Demuestra que $2\mathcal{S}$ es divisible por $n$,

Traducido del inglés.

Problema

Problema 1 - IMO 2016 - Concurrencia de rectas

Enviado por jesus el 11 de Julio de 2016 - 11:21.

El triángulo $BCF$  tiene ángulo recto en $B$. Sea $A$ el punto en la línea $CF$ tal que $FA = FB$ y $F$ se encuentra entre $A$ y $C$. El punto $D$ está elegido de tal manera que $DA= DC$ y $AC$ es la bisectríz de $\angle DAB$. El punto $E$ es tal que $EA=ED$ y $AD$ es la bisectríz de $\angle EAC$. Sea $M$ el punto medio de $CF$. Sea $X$ el punto tal que $AMXE$ es un paralelogramo (donde $AM \parallel EX$ y $AE \parallel MX$). Demuestra que las líneas $BD$, $FX$ y $ME$ son concurrentes.

Traducido del inglés.

Problema

Circunferencia tangente a un cateto

Enviado por German Puga el 3 de Julio de 2016 - 12:55.

Sea $ABC$ un triángulo rectángulo con $\angle ABC=90$, $BC=72$, $AC=78$. Se considera un punto $D$ sobre el lado $AB$ de tal modo que $2AD=BD$. Sea $O$ el centro de la circunferencia que pasa por los puntos $A$ y $D$ y es tangente al lado $BC$. Encuentra la medida del segmento $OB$.

Problema

Medida de segmento para área 2016

Enviado por German Puga el 3 de Junio de 2016 - 17:37.
$ABCD$ es un cuadrado de área 7056. $E$ es un punto sobre el lado $CD$ y $F$ es el punto medio de $AE$. ¿Cuánto debería medir el segmento $EC$ para que el área del cuadrilátero $FECB$ sea 2016?
 
Problema

La región complemento de dos hexágonos

Enviado por jesus el 28 de Mayo de 2016 - 18:30.

En la siguiente figura tenemos dos hexágonos con sus lados iguales. El paralelogramo tiene área de 2016 u2 , ¿cuál es el área de la región sombreada?

Problema

Escalinata

Enviado por Paola Ramírez el 7 de Mayo de 2016 - 02:02.

Sea $\triangle ABC$ un trinagulo isósceles con $AC=CB, AB=7$ y altura $CD=9$. Los segmentos $a,b,c,d,e,f,g,h$ e $i$ son paralelos a $AB$ y dividen a $CD$ en $9$ segmentos iguales.

Encuentra $a+b+c+d+e+f+i$

Problema

El extraño caso del hexágono azul

Enviado por Paola Ramírez el 7 de Mayo de 2016 - 01:48.

En un cuadrado $ABCD$ de lado $60$. $E,F,G$ y $H$ son puntos medios de $AB,BC;CD$ y $DA$, respectivamente. Encuentra el área del hexágono $IJKLMN$.

Problema

Problema 5. 29a Olimpiada Mexicana de Matemáticas

Enviado por vmp el 25 de Noviembre de 2015 - 12:52.

Sea $I$ el incentro de un triángulo acutángulo $ABC$. La recta $AI$ corta por segunda vez al circuncírculo del triángulo $BIC$ en $E$. Sean $D$ el pie de la altura desde $A$ sobre $BC$ y $J$ la reflexión de $I$ con respecto a $BC$. Muestra que los puntos $D$, $J$ y $E$ son colineales.

 

 

Problema

Problema 1. 29a Olimpiada Mexicana de Matemáticas

Enviado por vmp el 24 de Noviembre de 2015 - 11:08.

Sea $ABC$ un triángulo y sea $H$ su ortocentro. Sea $PQ$ un segmento que pasa por $H$ con $P$ en $AB$, $Q$ en $AC$ y tal que $\angle PHB=\angle CHQ$. Finalmente en el ciruncírculo del triángulo $ABC$ considera $M$ el punto medio del arco $BC$ que no contiene a $A$. Muestra que $MP=MQ$.

Problema

Problema 3(G)

Enviado por jmd el 30 de Agosto de 2015 - 08:52.
Sea $ABC$ un triángulo con $AB\neq{AC}$. Sean $H$ su ortocentro, $O$ su circuncentro y $D$ el punto medio de $BC$. Sea $P$ la intersección de $AO$ y $HD$. Demostrar que los triángulos $AHP$ y $ABC$ tienen el mismo baricentro.
Problema

Problema 1 - IMO 2015 - Conjunto de puntos y mediatrices.

Enviado por jesus el 14 de Julio de 2015 - 17:26.

Decimos que un conjunto finito $\cal{S}$ de puntos en el plano es equilibrado si para cada dos puntos distintos $A$ y $B$ en $\cal{S}$ hay un punto $C$ en $\cal{S}$ tal que $AC = BC$. Decimos que $\cal{S}$ es libre de centros si para cada tres puntos distintos $A$, $B$, $C$ en $\cal{S}$ no existe ningún punto $P$ en $\cal{S}$ tal que $PA=PB=PC$.

  1. Demostrar que para todo $n \geq 3$ existe un conjunto de $n$ puntos equilibrado.
  2. Determinar todos los enteros $n \geq 3$ para los que existe un conjunto de $n$ puntos equilibrado y libre de centros.
Problema

Problema geométrico --no tan trivial

Enviado por jmd el 20 de Junio de 2015 - 12:38.

Sea ABCD un cuadrado unitario. Con en A y radio AB se traza el arco BD. De manera similar, con centro en B y radio BA, se traza el arco AC. Calcular el radio r del círculo $\gamma$ que es tangente a los arcos AC y BD y al lado AB del cuadrado unitario.

Problema

Problema 11

Enviado por Roberto Alain R... el 11 de Junio de 2015 - 23:42.

Tres cuadrados idénticos  $ABCD, AEFG, AHIJ$ (todos etiquetados en contra de las manecillas del reloj) tienen el vértice $A$ en común y los ángulos $JAB, DAE, GAH$ son iguales. Calcular el ángulo $GBH$