Problemas
También puedes compartirnos alguno de tus problemas favoritos:
P5. Jugando con ecuaciones raras
Alicia y Bazza juegan al $inekoalaty$, un juego para dos jugadores cuyas reglas dependen de un número real positivo $\lambda$ conocido por ambos. En el turno $n$ del juego (comenzando con $n=1$) ocurre lo siguiente:
- Si $n$ es impar, Alicia elije un número real no negativo $x_n$ tal que: $$x_1 + x_2 + \dots + x_n \leq \lambda n$$
- Si $n$ es par, Bazza elije un número real no negativo $x_n$ tal que: $$x_1^2 + x_2^2 + \dots + x_n^2 \leq n$$
Si un jugador no puede elegir un $x_n$ adecuado, el juego termina y el otro jugador gana. Si el juego continúa indefinidamente ningún jugador gana. Ambos jugadores conocen todos los números elegidos.
P4. Divisores propios en una sucesión infinita
Un divisor propio de un entero positivo $N$ es un divisor positivo de $N$ distinto de $N$.
La sucesión infinita $a_1, \ a_2, \dots$ está formada por enteros positivos, cada uno con al menos 3 divisores propios. Para cada $n \geq 1$ el entero $a_{n+1}$ es la suma de los tres mayores divisores propios de $a_n$.
Determina todos los valores posibles de $a_1$.
P3. Funciones Bonza
Sea $\mathbb{N}$ el conjunto de los enteros positivos. Una función $f: \mathbb{N} \rightarrow \mathbb{N}$ se llama $genial$ si
$$f(a) | b^a-f(b)^{f(a)}$$
Para todos los enteros positivos $a, b$.
Determine la menor constante real $c$ tal que $f(n) \leq cn$, para todas las funciones $geniales \ f$ y todos los enteros positivos $n$.
P2. Paralela tangente a un circuncírculo
Sea $\Omega$ y $\Gamma$ circunferencias de centros $M$ y $N$ respectivamente tales que el radio de $\Omega$ es menor al radio de $\Gamma$. Supongamos que las circunferencias $\Omega$ y $\Gamma$ se cortan en dos puntos distintos $A$ y $B$. La recta $MN$ corta a $\Omega$ en $C$ y a $\Gamma$ en $D$, de forma que los puntos $C, \ M,\ N, \ D$ están en esa recta en ese orden. Sea $P$ el circuncentro del triángulo $ACD$. La recta $AP$ corta de nuevo a $\Omega$ en $E \neq A$. La recta $AP$ corta de nuevo a $\Gamma$ en $F \neq A$. Sea $H$ el ortocentro del triángulo $PMN$.
Demuestre que la recta paralela a $AP$ que pasa por $H$ es tangente al circuncírculo del triángulo $BEF$.
P1. Rectas soleadas
Una recta del plano se llama $soleada$ si no es paralela ni al eje $x$, ni al eje $y$, ni a la recta $x+y=0$.
Sea $n \geq 3$ un entero dado. Determine todos los enteros no negativos $k$ para los que existen $n$ rectas distintas del plano tal que:
- Para cualesquiera enteros positivos $a$ y $b$ con $a+b \leq n+1$, el punto $(a,b)$ está en al menos una de las rectas
- Exactamente $k$ de estas $n$ rectas son soleadas
P8. Permutando 2n números y múltiplos.
Encuentra todas las parejas de enteros positivos $(n, m)$ que cumplan lo siguiente: existe un entero impar $r$ con $0<r \leq m-1$, y una permutación $\{a_1, \dots, a_n, b_1, \dots, b_n\}$ de $\{2, 3, \dots , 2n, 2n+1\}$ tales que los $n$ números
$$a_1b_1-r, a_2b_2-r, \dots , a_nb_n-r$$
son todos múltiplos de $m$.
P7. Contando el producto ij.
Sea $n$ un entero positivo. Se numeran los renglones y las columnas de una cuadrícula de $n \times n$ del 1 al $n$. Dentro de cada cuadrito se escribe un entero no-negativo de manera que el entero escrito en el cuadrito del renglón $i$ y la columna $j$ es igual a la cantidad de cuadritos que tienen escrito el producto $i \cdot j$. Determina de cuántas maneras se puede hacer esto.
P6. Razones entre cíclicos dobles y pies de perpendicular.
Sea $ABCD$ un cuadrilatero cíclico y $E$ el punto de intersección de sus diagonales. La circunferencia que pasa por los vértices del triángulo $BEC$ corta a la recta $AB$ en $F$ y a la recta $CD$ en $G$. Sea $P$ el pie de la perpendicular desde $A$ sobre la recta $BC$ y sea $Q$ el pie de la perpendicular desde $B$ sobre la recta $AD$. Demuestra que:
$$\frac{AF}{DG}=\frac{AP}{BQ}$$
P5. Polinomio con coeficientes en progresión geométrica
Sea $a_0, a_1, a_2, \dots$ una sucesión geométrica estrictamente creciente. Determina todos los números reales $x$ para los cuales existe $n \geq 0$ tal que:
$$a_nx^n+a_{n-1}x^{n-1}+\dots + a_1x + a_0=0$$
Nota: Una sucesión geométrica es estrictamente creciente si existe una constante $r$ tal que $a_{n+1}=a_n\cdot r$ y además $a_{n+1}>a_n$ para toda $n \geq 0$.
P4. Desigualdades del femenil
Sean $a, b, c, d$ números reales positivos. Demuestra que:
$$\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}\right)^4 \geq \frac{64abcd}{a^4+b^4+c^4+d^4}$$
P3. Ortocentros obtusángulos y colinealidad
Sea $ABC$ un triángulo escaleno con $\angle BAC = 90^{\circ}$, y sea $M$ el punto medio de $BC$. La recta perpendicular a $AM$ por $M$ intersecta a las rectas $AB$ y $AC$ en $P$ y $Q$ respectivamente. Sean $H_1, H_2$ los ortocentros de los triángulos $CMP$ y $BMQ$ respectivamente. Demuestra que $H_1H_2$ pasa por $A$.
NOTA: el ortocentro es la intersección de las tres alturas.
P2. Producto de primos y MCD.
Los conjuntos $A, \ B, \ C$ y $D$ cumplen las siguientes condiciones:
- Sus elementos son números enteros del 1 al 20.
- Cada conjunto tiene 4 elementos y no hay un mismo número en dos o más conjuntos distintos.
- Sean $P_a, \ P_b, \ P_c, \ P_d$ los productos de los números en los conjuntos $A, B, C, D$ respectivamente, y $Q_a, Q_b, Q_c, Q_d$ el producto de los factores primos distintos de $P_a, P_b, P_c, P_d$ respectivamente.
Se cumple que:
$$P_a \cdot P_b = P_c \cdot P_d$$
$$mcd(Q_a,Q_b)\cdot mcd(Q_c,Q_d) \leq 3$$
¿De cuántas maneras se pueden elegir los conjuntos?
P1. Desperdiciando agua en garrafones infinitos
Luna y sus amigas estan jugando con agua. Tienen $n$ garrafones vacíos de capacidad infinita y $m$ botellas llenas de agua, con $m>n$. Las botellas están ordenadas y numeradas $1, 2, \dots, m$, de la más pequeña a la más grande. La botella $i$ tarda exactamente $i$ segundos en vaciarse, para $1 \leq i \leq m$. Sus amigas van a vaciar el agua de las botellas en los garrafones siguiendo estas reglas:
P4. Numero primo vs cubo perfecto
Sea $p$ un número primo (positivo). El número $16p + 1$ es un cubo perfecto. ¿Cuáles son los posibles valores para $p$?
P3. DANI el ciclico
Sea $ABC$ un triángulo con $\angle CAB =90 ^ {\circ}$ e incentro $I$. Las bisectrices de $\angle C$ y $\angle B$ intersecan a $AB$ y $AC$ en $E$ y $F$ respectivamente, e intersecan a la perpendicular de $BC$ por $A$ en los puntos $P$ y $Q$ respectivamente. Sean $D$ y $N$ los puntos medios de $PE$ y $QF$ respectivamente.
- Demuestra que los puntos $D, \ A, \ N, \ I$ están sobre una circunferencia.
- Demuestra que $DN$ es paralela a $BC$
P2. Recibe el doble presionando un botón.
Samuel tiene un cajero mágico que funciona de la siguiente manera: él ingresa una cantidad $x$ de dinero, siendo $x$ un entero positivo, y presiona un botón que le da el doble de la cantidad de dinero que hay (mas lo que ya tenía). Por ejemplo, si Samuel inserta 1 peso y presiona el botón, la máquina le dará 2 pesos, por lo que ahora tiene 3 pesos. Si presiona el botón una segunda vez, la máquina le devolverá 6 pesos. Y así sucesivamente. Si Samuel presiona el botón $n$ veces, cuánto dinero, en términos de $x$, tendrá en total?
P1. Brainrot matematico.
¿De cuántas formas puedo ordenar las letras de "$tralalerotralala$" de tal forma que las letras de "$tra$" respeten su orden? Ejemplo, $tratralalerolala$ es válido, pero $tralalerotarlala$ no lo es.
P6. Borrando pizarrón hasta que ambos sumen un múltiplo de 3
Ana y Beto juegan en un pizarrón donde se han colocado los números del 1 al 2024. En cada turno Ana escoge tres números $a,b,c$ escritos en el pizarrón y en su turno Beto los borra y reescribe alguno de los números:
$$a+b-c, a-b+c, b+c-a$$
El juego termina cuando quedan solamente dos números y Ana no puede hacer su jugada. si la suma de los números que quedan al final es múltiplo de 3, Beto gana. En caso contrario, Ana gana. ¿Quién puede asegurar su victoria?
P5. Conjuntos infinitos iguales y uno en sucesión aritmética
Sean $A$ y $B$ dos conjuntos finitos de números reales positivos tales que:
- Para cualquier par de elementos $u \geq v$ de $A$, se cumple que $u+v$ es elemento de $B$
- Para cualquier par de elementos $s > t$ de $B$, se cumple que $s-t$ es un elemento de $A$
Prueba que $A=B$ o existe un número real $r$ tal que $B=\{2r, 3r, 4r, \dots \}$
P4. Cuarta concurrencia en un ortocentro
Sea $ABC$ un triángulo acutángulo con ortocentro $H$ y sea $M$ un punto del segmento $BC$. La recta por $M$ y perpendicular a $BC$ corta a las rectas $BH$ y $CH$ en los puntos $P$ y $Q$, respectivamente. Muestra que la recta $AM$ pasa por el ortocentro del triángulo $HPQ$.
