Problemas
También puedes compartirnos alguno de tus problemas favoritos:
El 6 del estatal 2022
En una circunferencia $\Gamma$ con centro en $D$ se trazan dos tangentes $AE$ y $AF$ con $E$ y $F$ sobre $\Gamma$. Sean $B$ y $C$ puntos sobre los segmentos $AE$ y $AF$ respectivamente de tal manera que $BC$ también es tangente a $\Gamma$. Sea $J$ la intersección de $BD$ con $EF$. Demuestra que el ángulo $CJB$ es un ángulo recto.
Problema 5 Estatal 2022
Encuentra todas las parejas de enteros positivos (x,n) tales que:
(3)(2x) + 4 = n2
Matrimonios en una mesa
A una cena llegan 3 matrimonios. Se quieren sentar alrededor de una mesa redonda de manera que nadie quede junto a su pareja. ¿De cuántas formas se pueden acomodar si Ana ya tiene un lugar asignado fijo?
El 3 del estatal 2022
Encuentra todos los valores para n de tal forma que la expresión
6n+1
sea un número con todos sus dígitos iguales.
Juego con una bolsa de 2022 piedras
Julieta y Edwin juegan al siguiente juego. Se empieza con una bolsa que contiene 2022 piedras. Se juega por turnos alternados y cada jugador puede hacer lo siguiente:
- Si el número de piedras en la bolsa es par, el jugador puede tomar una piedra o la mitad de las piedras.
- Si el número de la bolsa es impar, tiene que tomar una sola piedra.
Gana quien tome la última piedra. Julieta empieza el juego.
Determina quién tiene una estrategia ganadora y explícala.
Mesa hexagonal con mantel rectangular
Carlos tiene una mesa en forma de hexágono regular y un mantel rectangular con área 2022 que cubre un rectángulo de la mesa formado por exactamente dos lados paralelos de la mesa como bases del rectángulo. ¿Cuál es el área de la mesa?
El difícil de la segunda ronda (el 4)
Tenemos 16 mosaicos que tienen dos cuartos de circunferencia centradas en esquinas opuestas cuyo radio es la mitad del lado de la baldosa como se muestra:
Pon a prueba tu vista
En el trapecio ABCD de bases AB y CD, las diagonales AC y BD son perpendiculares entre sí. Los Segmentos AB y BD miden 20 m y 17 m respectivamente. El área del triángulo ABD es 102 m2. ¿Cuántos metros mide el lado CD?
El número de Belmaris
André, Belmaris, Claudia, Daniel, Elmer y Germán van a jugar a decir números en ese orden. André y Belmaris podrán elegir sus números, pero los siguientes deben decir el resultado de la multiplicación de los números que dijeron las dos personas antes que ellos, sin equivocarse. Si André dijo "2" y Germán dijo "6 075 000" (seis millones setenta y cinco mil), ¿qué numero dijo Belmaris?
Las prendas de Mauricio
Mauricio se está probando ropa en una tienda. Está indeciso entre 4 camisas, 7 suéteres, 3 sudaderas y 3 pantalones, todos estos artículos distintos. Comprará exactamente 3 artículos, todos de diferentes tipos (es decir, no dos camisas y un suéter o tres pantalones, etc.). ¿De cuántas formas Mauricio podrá hacer sus compras?
Problema 4. 21a OMM Final Estatal
Dos personas A y B van a jugar un juego alternando turnos; A toma el primer turno. Para el juego está dibujada sobre un papel una cuadrícula de 7 × 7. En cada turno se borran algunos de los cuadritos como sigue: El jugador en turno escoge un cuadrito y borra toda la columna y el renglón a los que pertenece ese cuadrito dentro de la porción rectangular donde está en ese momento el cuadrito. Por ejemplo, si al principio A escoge
el cuadrito marcado con 1 en la figura (a) de abajo, a B le queda la figura (b) y, si él escoge el cuadrito marcado con 2, entonces para el siguiente turno a A le queda la figura (c).
Problema 3. 21a OMM Final Estatal
En la figura, $ABC$ es un triángulo isósceles con $|AB| = |AC|$; $D$ es un punto sobre $AC$ tal que $DB$ es perpendicular a $BC$; $E$ es un punto sobre la recta $BC$ tal que $|CE| = 2|BC|$ y $F$ es un punto sobre $ED$ tal que $FC$ es paralela a $AB$. Probar que la recta $FA$ es paralela a $BC$.
Práctica de módulos
Problema 4 - IMO 2022 - Un cíclico a partir de un pentágono
Problema 5 - IMO 2022 - Redacción corta pero peligrosa
Hallar todas las ternas (a,b,p) de números enteros positivos con p primo que satisfacen
ap = b! + p
Típica probabilidad de dados y monedas
Se va a lanzar al mismo tiempo un dado con los números del 1 al 6 y una moneda con los números 1 y 2. ¿Cuál es la probabilidad que la multiplicación de los números que caigan en la moneda y el dado sea un número impar?
Hexágono dentro de triángulos equilateros.
La siguiente figura está formada por 6 triángulos iguales de lado igual al doble del lado del hexágono central. ¿Qué fracción de la figura completa representa el hexágono central?

Ten cuidado con las salsas
El siguiente cuadrado tenía los números del 1 al 9 escritos en él, pero se manchó con catsup y ahora se ve así. Por suerte sabemos que la suma de los vecinos del 9 era 15. ¿Cuál es la suma de los vecinos del 8?
Nota: Dos números se consideran vecinos si los cuadrados en los que están escritos comparten un lado.

Problema técnico de primos
Encuentra la suma de los números primos que dividen a todos los números de 3 dígitos con todos ellos iguales.
Torneo de Ping Pong
En una escuela hubo un torneo de Ping Pong. La escuela cuenta con 2 mesas para jugar y en total hubo 6 partidos. Los partidos duraron 8, 10, 12, 17, 21 y 22 minutos y es posible comenzar un partido justo al terminar el anterior. Si el torneo comenzó a las 9:00 de la mañana, ¿a qué hora es lo más temprano que pudo terminar el torneo?
